15 research outputs found

    Water-gas-shift over metal-free nanocrystalline ceria: an experimental and theoretical study

    Get PDF
    A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H-2. The degree of reduction of the ceria, specifically the (100) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite of in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. This study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.Peer ReviewedPostprint (author's final draft

    In situ elucidation of the active state of Co-CeOx catalysts in the dry reforming of methane: the important role of the reducible oxide support and interactions with cobalt

    Get PDF
    The dry reforming of methane was systematically studied over a series (2-30 wt%) of Co (~5nm in size) loaded CeO2 catalysts, with an effort to elucidate the behavior of Co and ceria in the catalytic process using in-situ methods. For the systems under study, the reaction activity scaled with increasing Co loading, and a 10 wt% Co-CeO2 catalyst exhibiting the best catalytic activity and good stability at 500 °C with little evidence for carbon accumulation. The phase transitions and the nature of active components in the catalyst were investigated during pretreatment and under reaction conditions by ex-situ/in-situ techniques including X-ray diffraction (XRD) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). These studies showed a dynamical evolution in the chemical composition of the catalysts under reaction conditions. A clear transition of Co3O4 → CoO → Co, and Ce4+ to Ce3+, was observed during the temperature programmed reduction under H2 and CH4. However, introduction of CO2, led to partial re-oxidation of all components at low temperatures, followed by reduction at high temperatures. Under optimum CO and H2 producing conditions both XRD and AP-XPS indicated that the active phase involved a majority of metallic Co with a small amount of CoO both supported on a partially reduced ceria (Ce3+/Ce4+). We identified the importance of dispersing Co, anchoring it onto ceria surface sites, and then utilizing the redox properties of ceria for activating and then oxidatively converting methane while inhibiting coke formation. Furthermore, a synergistic effect between cobalt and ceria and the interfacial site are essential to successfully close the catalytic cycle.Peer ReviewedPostprint (author's final draft

    Three-dimensional ruthenium-doped TiO2 sea urchins for enhanced visible-light-responsive H-2 production

    No full text
    Three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO2 hierarchical architectures composed of radially aligned, densely-packed TiO2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H-2 production under visible light irradiation, not possible on undoped and bulk rutile TiO2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m(2) g(-1) but also induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti3+, significantly below the conduction band of TiO2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.Postprint (author's final draft

    Water-gas-shift over metal-free nanocrystalline ceria: an experimental and theoretical study

    No full text
    A tandem experimental and theoretical investigation of a mesoporous ceria catalyst reveals the properties of the metal oxide are conducive for activity typically ascribed to metals, suggesting reduced Ce3+ and oxygen vacancies are responsible for the inherent bi-functionality of CO oxidation and dissociation of water required for facilitating the production of H-2. The degree of reduction of the ceria, specifically the (100) face, is found to significantly influence the binding of reagents, suggesting reduced surfaces harbor the necessary reactive sites. The metal-free catalysis of the reaction is significant for catalyst design considerations, and the suite of in situ analyses provides a comprehensive study of the dynamic nature of the high surface area catalyst system. This study postulates feasible improvements in catalytic activity may redirect the purpose of the water-gas shift reaction from CO purification to primary hydrogen production.Peer Reviewe

    Three-dimensional ruthenium-doped TiO2 sea urchins for enhanced visible-light-responsive H-2 production

    No full text
    Three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO2 hierarchical architectures composed of radially aligned, densely-packed TiO2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H-2 production under visible light irradiation, not possible on undoped and bulk rutile TiO2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m(2) g(-1) but also induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti3+, significantly below the conduction band of TiO2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity

    Importance of Low Dimensional CeO<sub><i>x</i></sub> Nanostructures in Pt/CeO<sub><i>x</i></sub>–TiO<sub>2</sub> Catalysts for the Water–Gas Shift Reaction

    No full text
    CO<sub>2</sub> and H<sub>2</sub> production from the water–gas shift (WGS) reaction was studied over Pt/CeO<sub><i>x</i></sub>–TiO<sub>2</sub> catalysts with incremental loadings of CeO<sub><i>x</i></sub>, which adopts variations in the local morphology. The lowest loading of CeO<sub><i>x</i></sub> (1 wt % to 0.5 at. %) that is configured in its smallest dimensions exhibited the best WGS activity over larger dimensional structures. We attribute this to several factors including the ultrafine dispersed one-dimensional nanocluster geometry, a large concentration of Ce<sup>3+</sup> and enhanced reducibility of the low loadings. We utilized several in situ experiments to monitor the active state of the catalyst during the WGS reaction. X-ray diffraction (XRD) results showed lattice expansion that indicated reduced ceria was prevalent during the WGS reaction. On the surface, Ce<sup>3+</sup> related hydroxyl groups were identified by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The enhanced reducibility of the catalyst with the introduction of ceria was further revealed by H<sub>2</sub>-temperature programed reduction (H<sub>2</sub>-TPR) and good thermal stability was confirmed by <i>in situ</i> environmental transmission electron microscopy (ETEM). We also investigated the formation of the low dimensional structures during catalyst preparation, through a two-stage crystal growth of ceria crystallite on TiO<sub>2</sub> nanoparticle: fine crystallites ∼1D formed at ∼250 °C, followed by crystal growth into 2D chain and 3D particle from 250–400 °C
    corecore