1,207 research outputs found

    Atomic Data for Permitted Resonance Lines of Atoms and Ions from H to Si, and S, Ar, Ca and Fe

    Full text link
    We list vacuum wavelengths, energy levels, statistical weights, transition probabilities and oscillator strengths for permitted resonance spectral lines of all ions of 18 astrophysically important elements (H through Si, S, Ar, Ca, Fe). Using a compilation of experimental energy levels, we derived accurate wavelengths for 5599 lines of 1828 ground-term multiplets which have gf-values calculated in the Opacity Project. We recalculated the Opacity Project multiplet gf-values to oscillator strengths and transition probabilities of individual lines. For completeness, we added 372 resonance lines of NeI, ArI, FeI and FeII ions which are not covered by the Opacity Project. Intercombination and forbidden lines are not included in the present compilation.Comment: 6 pages of text, latex, 1 figure, 4 tables; tables in ASCII format available at ftp://asta.pa.uky.edu/dima/lines/ or at http://www.pa.uky.edu/~verner/atom.html Accepted by Atomic Data Nucl. Data Table

    Revisited abundance diagnostics in quasars: Fe II/Mg II ratios

    Get PDF
    Both the Fe II UV emission in the 2000- 3000 A region [Fe II (UV)] and resonance emission line complex of Mg II at 2800 A are prominent features in quasar spectra. The observed Fe II UV/ Mg II emission ratios have been proposed as means to measure the buildup of the Fe abundance relative to that of the alpha-elements C, N, O, Ne and Mg as a function of redshift. The current observed ratios show large scatter and no obvious dependence on redshift. Thus, it remains unresolved whether a dependence on redshift exists and whether the observed Fe II UV/ Mg II ratios represent a real nucleosynthesis diagnostic. We have used our new 830-level model atom for Fe+ in photoionization calculations, reproducing the physical conditions in the broad line regions of quasars. This modeling reveals that interpretations of high values of Fe II UV/ Mg II are sensitive not only to Fe and Mg abundance, but also to other factors such as microturbulence, density, and properties of the radiation field. We find that the Fe II UV/ Mg II ratio combined with Fe II (UV)/ Fe II (Optical) emission ratio, where Fe II (Optical) denotes Fe II emission in 4000 - 6000 A can be used as a reliable nucleosynthesis diagnostic for the Fe/Mg abundance ratios for the physical conditions relevant to the broad-line regions (BLRs) of quasars. This has extreme importance for quasar observations with the Hubble Space Telescope and also with the future James Webb Space Telescope.Comment: kverner.gzip, 9 pages, f1-5.eps; aastex.cls; aastexug.sty, ApJL in pres

    On the Stable Relative Orientation of Groups Connected by a Carbon-Carbon Single Bond

    Get PDF
    Langseth and his co-workers [1] have recently applied the results of essentially incomplete spectroscopic studies of liquid cyclohexane, symmetrical tetrachloroethane, and ethylene deuterobromide to a discussion of the intramolecular forces restricting internal rotation about the C-C bond. We believe that none of their structural conclusions is correct. Their discussion is based on their conclusion that in these molecules the opposed or eclipse configurations are the stable ones. Insofar as liquid cyclohexane and symmetrical tetrachloroethane are concerned this conclusion is most probably incorrect since it directly contradicts the results of a great number of more straightforward studies of these and similar molecules

    I, Too, Sing America: Vietnam as Metaphor in Coming Home

    Get PDF
    An analysis of the representations of black soldiers in George Davis\u27 1972 novel, Coming Home

    Atomic Data for Astrophysics. II. New Analytic Fits for Photoionization Cross Sections of Atoms and Ions

    Get PDF
    We present a complete set of analytic fits to the non-relativistic photoionization cross sections for the ground states of atoms and ions of elements from H through Si, and S, Ar, Ca, and Fe. Near the ionization thresholds, the fits are based on the Opacity Project theoretical cross sections interpolated and smoothed over resonances. At higher energies, the fits reproduce calculated Hartree-Dirac-Slater photoionization cross sections.Comment: 24 pages including Postscript figures and tables, uses aaspp4.sty, accepted for publication in Astrophysical Journal. Misprint in Eq.(1) is correcte

    Effective order strong stability preserving Runge–Kutta methods

    Get PDF
    We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of effective order methods. We show that this allows the construction of four-stage SSP methods with effective order four (such methods cannot have classical order four). However, we also prove that effective order five methods—like classical order five methods—require the use of non-positive weights and so cannot be SSP. By numerical optimization, we construct explicit SSP Runge–Kutta methods up to effective order four and establish the optimality of many of them. Numerical experiments demonstrate the validity of these methods in practice

    The Molecular Structure of Cyclobutane

    Get PDF
    The cyclobutane molecule has been found by electron diffraction to have the following bond distances and bond angles: C–C, 1.568±0.02A; C–H, 1.098±0.04A; ∠HCH, 114±8°. On the average the ring is nonplanar, with dihedral angle 20° (+10°, −20°), but the equilibrium symmetry may be either D_(2d) (puckered ring) or D_(4h) (planar ring with low rigidity leading to large amplitude of out‐of‐plane bending). This point is discussed in connection with earlier spectroscopic work. The long bond distances found in four‐membered rings are contrasted against the short distances in three‐membered rings, and the strain energies, bond distances, and HCH angles of cycloalkanes are discussed in terms of modern valence concepts. It is suggested that the potential energy arising from a repulsion of the nonbonded carbon atoms may contribute significantly to the apparently anomalously high strain energy of cyclobutane. The repulsive force associated with such a potential is shown to account satisfactorily for the long C–C distances
    • 

    corecore