276 research outputs found

    Editorial to special issue “Recent mechanics-based developments in structural dynamics and earthquake engineering”

    Get PDF
    In structural dynamics, the inertia of accelerated masses and the cornucopia of phenomena that contribute to damping have a significant influence on the internal forces and deformation of building structures. Typical problems of structural dynamics are the prediction of the vibration response of dynamically excited structures, for instance, induced by earthquakes, the identification of structural parameters based on the dynamic response, and the design of vibration-mitigating measures from the fundamental study to the implementation. Many traditionalmethods of structural dynamics and earthquake engineering are based on empirical approaches rather than rigorous application of fundamental mechanical principles. However, dramatic advances in mechanics now make it increasingly possible not only to model but also to solve and predict complex phenomena in dynamics. We are very pleased that, in response to these advances, this special issue of Acta Mechanica provides an insight into the latest mechanics-based developments in various branches of structural dynamics and earthquake engineering. It contains 20 contributions that we selected based on the reactions and feedback we received to our invitation. The first four papers deal with complex dynamic vehicle–bridge interaction (VBI). In the first paper, Homaei et al. [1] investigate the effect of VBI and highlight its similarities and differences to the effect of vibration dampers under earthquake excitation. Based on knowledge of recent experimental studies, König and Adam [2] present a new modeling approach for railway bridges under high-speed traffic, which takes into account both the horizontal and vertical interaction between track and structure. Hirzinger and Nackenhorst [3] apply a model-correction-based strategy for efficient reliability analysis of the uncertain VBI system, where a low-fidelity model is calibrated to the corresponding high-fidelity model close to the most probable point. The paper of Lei et al. [4] proposes a two-step bridge damage detection method based on wavelet transform analysis of the residual contact response of the moving front and rear vehicle wheels to reduce the impact of road surface roughness. Suitably, the next paper by Yang et al. [5] uses a numerical model based on the wave finite element method of wave propagation and attenuation in periodic supported rail, capturing the complex cross-section deformation of the waves. Changing topics away from railways, Amendola et al. [6] also seek a waveform solution but of nonlocal nanobeams dissipating thermal energy by radiation, employing an extension of Type II Green–Naghdi theory. The paper by Abdelnour and Zabel [7] is devoted to the identification of the modal information of complex three-dimensional space truss structures characterized by closely spaced modes as well as global and local vibration mechanisms. Pirrotta and Russotto [8], on the other hand, develop a new operationalmodal analysismethod based on signal filtering and the Hilbert transform of the correlation function matrix for dynamic system identification. The next two papers deal with machine learning in structural dynamics. Milicevic and Altay [9] present a theoretical data generation framework for test-integrated modeling of nonlinear systems in structural dynamics. In particular, a feedforward neural network is used for inverse modeling of nonlinear restoring forces. On the other hand, Maqdah et al. [10] build an unsupervised machine learning model capable of detecting patterns in arch forms under seismic loading and distinguishing between their stress and displacement contours. In one of the three contributions on structures under seismic loads, Zakian and Kaveh [11] provide a comprehensive review on seismic design optimization of engineering structures. Refined probabilistic seismic response evaluation of high-rise reinforced concrete structures is subject of Lyu et al. [12]. In the third contribution, Karaferis et al. [13] present a roadmap for determining comprehensive fragility curves for individual or groups of spherical pressure vessels, tackling the thorny issues of correlation and operational realities. Six other papers can be classified under the topic of vibration control. Rajana and Giaralis [14] introduce a nonlinear rooftop tuned mass damper-inerter system and numerically investigate its efficiency for seismic response mitigation of buildings. The hysteretic tuned mass damper system presented in Xiang et al. [15] is optimized for acceleration control of seismically excited structures. In Masnata et al. [16], both theoretical and experimental studies are conducted on the control performance of a sliding model of a tuned liquid column damper for short-period systems. The study of Li et al. [17] shows that the use of high-static–low-dynamic stiffness floating raft vibration isolation system is beneficial for the shock performance. De Castro Motta et al. [18] present a mechanical model for thermoplastic polyurethane membranes used as components in seismic isolators based on an experimental study. Sezer et al. [19], on the other hand, report the results of experimental investigations on the coefficient of friction at the interface of a PVC-sand-PVC layer, used as part of a low-cost geotechnical seismic isolation system. This special issue is completed with a paper by Minafò et al. [20] on the effect of interface model parameters on the numerical behavior of a finite element model for predicting the bond between fabric-reinforced cementitious matrix and masonry. We would like to thank all the authors who accepted our invitation to contribute to this special issue and the reviewers for their thorough and valuable comments on these studies. Our particular thanks go to Professor Hans Irschik, Editor-in-Chief, for the opportunity to publish this special issue in “Acta Mechanica” and for his guidance during its development. We thank Dr. Michael Stangl, editorial assistant, for his continued support, always responding to our requests in an efficient and timely manner

    Seismic damage estimation of in-plane regular steel/concrete composite moment resisting frames

    Get PDF
    © 2016 Elsevier Ltd. Simple empirical expressions to estimate maximum seismic damage on the basis of four well known damage indices for planar regular steel/concrete composite moment resisting frames having steel I beams and concrete filled steel tube (CFT) columns are presented. These expressions are based on the results of an extensive parametric study concerning the inelastic response of a large number of frames to a large number of ordinary far-field type ground motions. Thousands of nonlinear dynamic analyses are performed by scaling the seismic records to different intensities in order to drive the structures to different levels of inelastic deformation. The statistical analysis of the created response databank indicates that the number of stories, beam strength ratio, material strength and ground motion characteristics strongly influence structural damage. Nonlinear regression analysis is employed in order to derive simple formulae, which reflect the influence of the aforementioned parameters and offer a direct estimation of the damage indices used in this study. More specifically, given the characteristics of the structure and the ground motion, one can calculate the maximum damage observed in column bases and beams. Finally, three examples serve to illustrate the use of the proposed expressions and demonstrate their accuracy and efficiency

    Acceleration-sensitive ancillary elements in industrial facilities:alternative seismic design approaches in the new Eurocode

    Get PDF
    The Eurocode 8—Part 4 approaches, per their December 2022 update, are presented for the design of acceleration-sensitive industrial ancillary components. The seismic performance of such nested and/or supported ancillary elements, namely mechanical and electrical equipment, machinery, vessels, etc. is critical for the safety and operability of an industrial facility in the aftermath of an earthquake. Of primary importance are the structural characteristics of the supporting structure and the supported component, pertaining to resonance, strength, and ductility, and whether these are known (and to what degree) during initial design and/or subsequent modifications and upgrades. Depending on the availability and reliability of information on the overall system, the Eurocode methods comprise (a) a detailed component/structure-specific design accounting for all pertinent component and building characteristics, equivalent to typical building design per Eurocode 8—Part 1–2, (b) a conservative approach where a blanket safety factor is applied when little or no such data is available, and (c) a ductile design founded on the novel concept of inserting a fuse of verified ductility and strength in the load path between the supporting structure and the ancillary element. All three methods are evaluated and compared on the basis of a case-study industrial structure, showing how an engineer can achieve economy without compromising safety under different levels of uncertainty

    Direct damage controlled seismic design of plane steel degrading frames

    Get PDF
    A new method for seismic design of plane steel moment resisting framed structures is developed. This method is able to control damage at all levels of performance in a direct manner. More specifically, the method: (a) can determine damage in any member or the whole of a designed structure under any given seismic load, (b) can dimension a structure for a given seismic load and desired level of damage and (c) can determine the maximum seismic load a designed structure can sustain in order to exhibit a desired level of damage. In order to accomplish these things, an appropriate seismic damage index is used that takes into account the interaction between axial force and bending moment at a section, strength and stiffness degradation as well as low cycle fatigue. Then, damage scales are constructed on the basis of extensive parametric studies involving a large number of frames exhibiting cyclic strength and stiffness degradation and a large number of seismic motions and using the above damage index for damage determination. Some numerical examples are presented to illustrate the proposed method and demonstrate its advantages against other methods of seismic design. © 2014, Springer Science+Business Media Dordrecht

    SPO2FRAG V1.0: SOFTWARE FOR PUSHOVER-BASED DERIVATION OF SEISMIC FRAGILITY CURVES

    Full text link
    This article presents SPO2FRAG V1.0, the fi rst (beta) version of the Static PushOver to FRAGility software. The SPO2F RAG software is an interactive and user-friendly tool that can be used for approximate, computer-aided calc ulation of building seis mic fragility functions, based on static pushover analysis. It is coded in MATLAB ® environment and is currently under development at the Department of Structures for Engineering and Architecture of the University of Naples Federico II. At the core of the SPO2FRAG tool lies the SPO2IDA algorithm, which permits analytical predictions fo r incremental dynamic analysis summary fractiles at the sin- gle-degree-of-freedom system le vel. By effectively interfacing SPO2IDA with a series of oper- ations, intended to link the results of static pus hover analysis with the va riability that typically characterizes non-linear dynamic structural re sponse, SPO2FRAG provides an expedient so- lution to the computationally demanding task of analytically evaluati ng seismic building fra- gility, which would otherwise require a la rge number of non-linear dynamic analyses

    Collapse risk and residual drift performance of steel buildings using post-tensioned MRFs and viscous dampers in near-fault regions

    Get PDF
    The potential of post-tensioned self-centering moment-resisting frames (SC-MRFs) and viscous dampers to reduce the collapse risk and improve the residual drift performance of steel buildings in near-fault regions is evaluated. For this purpose, a prototype steel building is designed using different seismic-resistant frames, i.e.: moment-resisting frames (MRFs); MRFs with viscous dampers; SC-MRFs; and SC-MRFs with viscous dampers. The frames are modeled in OpenSees where material and geometrical nonlinearities are taken into account as well as stiffness and strength deterioration. A database of 91 near-fault, pulse-like ground motions with varying pulse periods is used to conduct incremental dynamic analysis (IDA), in which each ground motion is scaled until collapse occurs. The probability of collapse and the probability of exceeding different residual story drift threshold values are calculated as a function of the ground motion intensity and the period of the velocity pulse. The results of IDA are then combined with probabilistic seismic hazard analysis models that account for near-fault directivity to assess and compare the collapse risk and the residual drift performance of the frames. The paper highlights the benefit of combining the post-tensioning and supplemental viscous damping technologies in the near-source. In particular, the SC-MRF with viscous dampers is found to achieve significant reductions in collapse risk and probability of exceedance of residual story drift threshold values compared to the MRF. © 2016 Springer Science+Business Media Dordrech

    existing buildings the new italian provisions for probabilistic seismic assessment

    Get PDF
    In Europe, the reference document for the seismic assessment of buildings is the Eurocode 8-Part3, whose first draft goes back to 1996 and, for what concerns its safety format, has strong similarities with FEMA 276. Extended use of this document, especially in Italy after the 2009 L'Aquila earthquake has shown its inadequacy to provide consistent and univocal results. This situation has motivated the National Research Council of Italy to produce a document of a level higher than the one in force, characterized by a fully probabilistic structure allowing to account for all types of uncertainties and providing measures of performance in terms of mean rates of exceedance for a selected number of Limit States (LS). The document, which covers both reinforced concrete and masonry buildings, offers three alternative approaches to risk assessment, all of them belonging to the present consolidated state of knowledge in the area. These approaches include, in decreasing order of accuracy: (a) Incremental dynamic analysis on the complete structural model, (b) Incremental dynamic analysis on equivalent SDOF oscillator(s), (c) Non-linear static analysis. In all three approaches relevant uncertainties are distinguished in two classes: those amenable of description as continuous random variables and those requiring the set-up of different structural models. The first ones are taken into account by sampling a number of realizations from their respective distributions and by associating each realization with one of the records used for evaluating the structural response, the latter by having recourse to a logic tree. Exceedance of each of the three considered Limit States: Light or Severe damage and Collapse, is signaled by a scalar indicator Y, expressing the global state of the structure as a function of that of its members, taking a value of one when the Limit State is reached. For the first two LS's, which relate to functionality and to economic considerations, the formulation of Y is such as to leave to the owner the choice of the acceptable level of damage, while for the Collapse LS the formulation is obviously unique. An application to a real school building completes the paper

    A Seismic Performance Classification Framework to Provide Increased Seismic Resilience

    Get PDF
    Several performance measures are being used in modern seismic engineering applications, suggesting that seismic performance could be classified a number of ways. This paper reviews a range of performance measures currently being adopted and then proposes a new seismic performance classification framework based on expected annual losses (EAL). The motivation for an EAL-based performance framework stems from the observation that, in addition to limiting lives lost during earthquakes, changes are needed to improve the resilience of our societies, and it is proposed that increased resilience in developed countries could be achieved by limiting monetary losses. In order to set suitable preliminary values of EAL for performance classification, values of EAL reported in the literature are reviewed. Uncertainties in current EAL estimates are discussed and then an EAL-based seismic performance classification framework is proposed. The proposal is made that the EAL should be computed on a storey-by-storey basis in recognition that EAL for different storeys of a building could vary significantly and also recognizing that a single building may have multiple owners
    corecore