7 research outputs found

    Synthesis and characterization of thin film composite membranes made of PSF-TiO2/GO nanocomposite substrate for forward osmosis applications

    Get PDF
    Support layer of thin film composite (TFC) membrane plays an important role in forward osmosis (FO) performance. A new type of support layer or nanocomposite substrate was developed by incorporating titanium dioxide (TiO2)/graphene oxide (GO) into polysulfone (PSF) matrix. Prior to performance evaluation, the developed substrates were characterized with respect to surface chemistry, roughness and cross-sectional morphology. The results showed that both surface hydrophilicity and roughness of PSF-based substrates were increased upon incorporation of nanomaterials. Substrates with long finger-like voids extended from the top to the bottom could be developed upon incorporation of TiO2 (SubstrateTiO2) or TiO2/GO mixture (SubstrateTiO2/GO). The improved surface hydrophilicity and favorable structure formed are the main factors leading to higher water flux of nanocomposite substrate. Moreover, the water flux of FO using TFC membranes could be enhanced using this nanocomposite substrate. Comparing to the control TFC membrane, the TFC membranes made of SubstrateTiO2 and SubstrateTiO2/GO exhibited greater water flux with minimum increase in reverse draw solute flux. Based on the results obtained

    Synthesis and characterization of thin film composite membranes made of PSF-TiO2/GO nanocomposite substrate for forward osmosis applications

    Get PDF
    Support layer of thin film composite (TFC) membrane plays an important role in forward osmosis (FO) performance. A new type of support layer or nanocomposite substrate was developed by incorporating titanium dioxide (TiO2)/graphene oxide (GO) into polysulfone (PSF) matrix. Prior to performance evaluation, the developed substrates were characterized with respect to surface chemistry, roughness and cross-sectional morphology. The results showed that both surface hydrophilicity and roughness of PSF-based substrates were increased upon incorporation of nanomaterials. Substrates with long finger-like voids extended from the top to the bottom could be developed upon incorporation of TiO2 (SubstrateTiO2) or TiO2/GO mixture (SubstrateTiO2/GO). The improved surface hydrophilicity and favorable structure formed are the main factors leading to higher water flux of nanocomposite substrate. Moreover, the water flux of FO using TFC membranes could be enhanced using this nanocomposite substrate. Comparing to the control TFC membrane, the TFC membranes made of SubstrateTiO2 and SubstrateTiO2/GO exhibited greater water flux with minimum increase in reverse draw solute flux. Based on the results obtained, it can be concluded that the incorporation of TiO2 and/or GO nanoparticles into PSF substrate could potentially improve the TFC membrane performance during FO applications

    Synthesis and characterization of thin film composite membranes made of PSF-TiO2/GO nanocomposite substrate for forward osmosis applications

    Get PDF
    Support layer of thin film composite (TFC) membrane plays an important role in forward osmosis (FO) performance. A new type of support layer or nanocomposite substrate was developed by incorporating titanium dioxide (TiO2)/graphene oxide (GO) into polysulfone (PSF) matrix. Prior to performance evaluation, the developed substrates were characterized with respect to surface chemistry, roughness and cross-sectional morphology. The results showed that both surface hydrophilicity and roughness of PSF-based substrates were increased upon incorporation of nanomaterials. Substrates with long finger-like voids extended from the top to the bottom could be developed upon incorporation of TiO2 (SubstrateTiO2) or TiO2/GO mixture (SubstrateTiO2/GO). The improved surface hydrophilicity and favorable structure formed are the main factors leading to higher water flux of nanocomposite substrate. Moreover, the water flux of FO using TFC membranes could be enhanced using this nanocomposite substrate. Comparing to the control TFC membrane, the TFC membranes made of SubstrateTiO2 and SubstrateTiO2/GO exhibited greater water flux with minimum increase in reverse draw solute flux. Based on the results obtained, it can be concluded that the incorporation of TiO2 and/or GO nanoparticles into PSF substrate could potentially improve the TFC membrane performance during FO applications

    Association de la brumisation et la réfrigération pour la conservation des asperges au point de vente

    No full text
    International audienceThe aim of this study was to assess the combined effect of fogging and cold plate refrigeration on white asparagus quality during storage on a vegetable stall. Of the three storage conditions (Control, C; Fog, F; and Fog-Cold plate, FC), FC ensured that white asparagus retained a fresher appearance and had a longer shelf life (at least 5 d). Weight loss was reduced in products stored under FC conditions; meanwhile, weight loss was up to 14% when asparagus were stored under C conditions for 3 d. In the case of asparagus stored under F and C, browning was observed and the visual appearance of the product deteriorated obviously after 1 d, whereas for products stored under FC, such deterioration occurred only after 3 d or more. The results demonstrated that FC could be a promising technique for white asparagus storage on vegetable stalls
    corecore