45,197 research outputs found

    Revealing Majorana Fermion states in a superfluid of cold atoms subject to a harmonic potential

    Get PDF
    We here explore Majorana Fermion states in an s-wave superfluid of cold atoms in the presence of spin-orbital coupling and an additional harmonic potential. The superfluid boundary is induced by a harmonic trap. Two locally separated Majorana Fermion states are revealed numerically based on the self-consistent Bogoliubov-de Gennes equations. The local density of states are calculated, through which the signatures of Majorana excitations may be indicated experimentally

    Ellsberg Paradox: Ambiguity And Complexity Aversions Compared

    Get PDF
    We present a simple model where preferences with complexity aversion, rather than ambiguity aversion, resolve the Ellsberg paradox. We test our theory using laboratory experiments where subjects choose among lotteries that “range” from a simple risky lottery, through risky but more complex lotteries, to one similar to Ellsberg’s ambiguity urn. Our model ranks lotteries according to their complexity and makes different—at times contrasting—predictions than most models of ambiguity in response to manipulations of prizes. The results support that complexity aversion preferences play an important and separate role from beliefs with ambiguity aversion in explaining behavior under uncertainty

    Improved transfer matrix method without numerical instability

    Full text link
    A new improved transfer matrix method (TMM) is presented. It is shown that the method not only overcomes the numerical instability found in the original TMM, but also greatly improves the scalability of computation. The new improved TMM has no extra cost of computing time as the length of homogeneous scattering region becomes large. The comparison between the scattering matrix method(SMM) and our new TMM is given. It clearly shows that our new method is much faster than SMM.Comment: 5 pages,3 figure

    Exchange Bias in Ferromagnetic/Compensated Antiferromagnetic Bilayers

    Full text link
    By means of micromagnetic spin dynamics calculations, a quantitative calculation is carried out to explore the mechanism of exchange bias (EB) in ferromagnetic (FM)/compensated antiferromagnetic (AFM) bilayers. The antiferromagnets with low and high Neel temperatures have been both considered, and the crossover from negative to positive EB is found only in the case with low Neel temperature. We propose that the mechanism of EB in FM/compensated AFM bilayers is due to the symmetry broken of AFM that yields some net ferromagnetic components.Comment: 3figure

    Spline Galerkin methods for the Sherman-Lauricella equation on contours with corners

    Full text link
    Spline Galerkin approximation methods for the Sherman-Lauricella integral equation on simple closed piecewise smooth contours are studied, and necessary and sufficient conditions for their stability are obtained. It is shown that the method under consideration is stable if and only if certain operators associated with the corner points of the contour are invertible. Numerical experiments demonstrate a good convergence of the spline Galerkin methods and validate theoretical results. Moreover, it is shown that if all corners of the contour have opening angles located in interval (0.1π,1.9π)(0.1\pi, 1.9\pi), then the corresponding Galerkin method based on splines of order 00, 11 and 22 is always stable. These results are in strong contrast with the behaviour of the Nystr\"om method, which has a number of instability angles in the interval mentioned.Comment: 23 pages, 7 figure

    Pseudogap and Fermi-arc Evolution in the Phase-fluctuation Scenario

    Get PDF
    Pseudogap phenomena and the formation of Fermi arcs in underdoped cuprates are numerically studied in the presence of phase fluctuations that are simulated by an XY model. Most importantly the spectral function for each Monte Carlo sample is calculated directly and efficiently by the Chebyshev polynomials without having to diagonalize the fermion Hamiltonian, which enables us to handle a system large enough to achieve sufficient momentum/energy resolution. We find that the momentum dependence of the energy gap is identical to that of a pure d-wave superconductor well below the KT-transition temperature (TKTT_{KT}), while displays an upturn deviation from coskxcosky\cos k_x - \cos k_y with increasing temperature. An abrupt onset of the Fermi arcs is observed above TKTT_{KT} and the arc length exhibits a similar temperature dependence to the thermally activated vortex excitations.Comment: 5 pages, 4 figure
    corecore