3,208 research outputs found

    Gravitational vacuum energy in our recently accelerating universe

    Full text link
    We review current observations of the homogeneous cosmological expansion which, because they measure only kinematic variables, cannot determine the dynamics driving the recent accelerated expansion. The minimal fit to the data, the flat ΛCDM\Lambda CDM model, consisting of cold dark matter and a cosmological constant, interprets 4Λ4\Lambda geometrically as a classical spacetime curvature constant of nature, avoiding any reference to quantum vacuum energy. (The observed Uehling and Casimir effects measure forces due to QED vacuum polarization, but not any quantum material vacuum energies.) An Extended Anthropic Principle, that Dark Energy and Dark Gravity be indistinguishable, selects out flat ΛCDM\Lambda CDM. Prospective cosmic shear and galaxy clustering observations of the growth of fluctuations are intended to test whether the 'dark energy' driving the recent cosmological acceleration is static or moderately dynamic. Even if dynamic, observational differences between an additional negative-pressure material component within general relativity (Dark Energy) and low-curvature modifications of general relativity (Dark Gravity) will be extremely small.Comment: 3 pages, from Proceedings of the Casimir Workshop, to be published by IOP in Journal of Physics Conference Serie

    Comment on "The Cosmic Time in Terms of the Redshift", by Carmeli et al

    Get PDF
    The time-redshift relation of Carmeli et al. differs from that of the standard flat LambdaCDM model by more than 500 million years for 1 < z < 4.5.Comment: 2 pages, to appear Found. Phys. Let

    Neutrino mass constraint from CMB and its degeneracy with other cosmological parameters

    Full text link
    We show that the cosmic microwave background (CMB) data of WMAP can give subelectronvolt limit on the neutrino mass: m_nu < 0.63 eV (95% CL). We also investigate its degeneracy with other cosmological parameters. In particular, we show the Hubble constant derived from the WMAP data decreases considerably when the neutrino mass is a few times 0.1 eV.Comment: 3 pages, 2 figures, prepared for the TAUP2007 Proceeding

    Searching for Oscillations in the Primordial Power Spectrum: Perturbative Approach (Paper I)

    Full text link
    In this first of two papers, we present a new method for searching for oscillatory features in the primordial power spectrum. A wide variety of models predict these features in one of two different flavors: logarithmically spaced oscillations and linearly spaced oscillations. The proposed method treats the oscillations as perturbations on top of the scale-invariant power spectrum, allowing us to vary all cosmological parameters. This perturbative approach reduces the computational requirements for the search as the transfer functions and their derivatives can be precomputed. We show that the most significant degeneracy in the analysis is between the distance to last scattering and the overall amplitude at low frequencies. For models with logarithmic oscillations, this degeneracy leads to an uncertainty in the phase. For linear spaced oscillations, it affects the frequency of the oscillations. In this first of two papers, we test our code on simulated Planck-like data, and show we are able to recover fiducial input oscillations with an amplitude of a few times order 10^{-2}. We apply the code to WMAP9-year data and confirm the existence of two intriguing resonant frequencies for log spaced oscillations. For linear spaced oscillations we find a single resonance peak. We use numerical simulations to assess the significance of these features and conclude that the data do not provide compelling evidence for the existence of oscillatory features in the primordial spectrum.Comment: 13 pages, 22 figures. Paper 1 of 2. Fixed typos, added reference

    The Power Spectrum of the Sunyaev-Zel'dovich Effect

    Get PDF
    (Abridged) The hot gas in the IGM produces anisotropies in the Cosmic Microwave Background (CMB) through the thermal Sunyaev-Zel'dovich (SZ) effect. The SZ effect is a powerful probe of large-scale structure in the universe and must be carefully subtracted from measurements of the primary CMB anisotropies. We use moving-mesh hydrodynamical simulations to study the 3-dimensional statistics of the gas, and compute the mean comptonization parameter and the angular power spectrum of the SZ fluctuations, for different cosmologies. We compare these results with predictions using the Press-Schechter formalism. We find that the two methods agree approximately, but differ in details. We discuss this discrepancy, and show that resolution limits the reliability of our results to the 200<l<2000 range. For cluster- normalized CDM models, the SZ power spectrum is comparable to the primordial power spectrum around l=2000. We show that groups and filaments (kT<5 keV) contribute about 50% of the SZ power spectrum at l=500. About half of the SZ power spectrum on these scales is produced at redshifts z<0.1, and can thus be detected and removed using existing catalogs of galaxies and X-ray clusters. We discuss the implications of these results for the future MAP and Planck Surveyor missions.Comment: 21 revtex pages, including 2 tables and 12 figures. To appear in PRD. Minor revisions to match accepted version. Also available at http://www.astro.princeton.edu/~refre

    Tuning the stochastic background of gravitational waves using the WMAP data

    Full text link
    The cosmological bound of the stochastic background of gravitational waves is analyzed with the aid of the WMAP data, differently from lots of works in literature, where the old COBE data were used. From our analysis, it will result that the WMAP bounds on the energy spectrum and on the characteristic amplitude of the stochastic background of gravitational waves are greater than the COBE ones, but they are also far below frequencies of the earth-based antennas band. At the end of this letter a lower bound for the integration time of a potential detection with advanced LIGO is released and compared with the previous one arising from the old COBE data. Even if the new lower bound is minor than the previous one, it results very long, thus for a possible detection we hope in the LISA interferometer and in a further growth in the sensitivity of advanced projects.Comment: 9 pages, 2 figures, published in Modern Physics Letters A. arXiv admin note: substantial text overlap with arXiv:0901.119

    CMB Polarization Experiments

    Get PDF
    We discuss the analysis of polarization experiments with particular emphasis on those that measure the Stokes parameters on a ring on the sky. We discuss the ability of these experiments to separate the EE and BB contributions to the polarization signal. The experiment being developed at Wisconsin university is studied in detail, it will be sensitive to both Stokes parameters and will concentrate on large scale polarization, scanning a 47o47^o degree ring. We will also consider another example, an experiment that measures one of the Stokes parameters in a 1o1^o ring. We find that the small ring experiment will be able to detect cosmological polarization for some models consistent with the current temperature anisotropy data, for reasonable integration times. In most cosmological models large scale polarization is too small to be detected by the Wisconsin experiment, but because both QQ and UU are measured, separate constraints can be set on EE and BB polarization.Comment: 27 pages with 12 included figure

    Possible evidence for "dark radiation" from Big Bang Nucleosynthesis Data

    Full text link
    We address the emerging discrepancy between the Big Bang Nucleosynthesis data and standard cosmology, which asks for a bit longer evolution time. If this effect is real, one possible implication (in a framework of brane cosmology model) is that there is a ``dark radiation'' component which is negative and makes few percents of ordinary matter density. If so, all scales of this model can be fixed, provided brane-to-bulk leakage problem is solved.Comment: We found that references to some nhumbers from unpublished ref.3 in v1 lead to confusion of some readers: we decided to removed those in v
    corecore