30,843 research outputs found
Feasibility study of thin film tunnel cathodes
Thin film tunnel cathodes evaluated for use in ultrahigh vacuum gauge
Diffraction Analysis of 2-D Pupil Mapping for High-Contrast Imaging
Pupil-mapping is a technique whereby a uniformly-illuminated input pupil,
such as from starlight, can be mapped into a non-uniformly illuminated exit
pupil, such that the image formed from this pupil will have suppressed
sidelobes, many orders of magnitude weaker than classical Airy ring
intensities. Pupil mapping is therefore a candidate technique for coronagraphic
imaging of extrasolar planets around nearby stars. Unlike most other
high-contrast imaging techniques, pupil mapping is lossless and preserves the
full angular resolution of the collecting telescope. So, it could possibly give
the highest signal-to-noise ratio of any proposed single-telescope system for
detecting extrasolar planets. Prior analyses based on pupil-to-pupil
ray-tracing indicate that a planet fainter than 10^{-10} times its parent star,
and as close as about 2 lambda/D, should be detectable. In this paper, we
describe the results of careful diffraction analysis of pupil mapping systems.
These results reveal a serious unresolved issue. Namely, high-contrast pupil
mappings distribute light from very near the edge of the first pupil to a broad
area of the second pupil and this dramatically amplifies diffraction-based edge
effects resulting in a limiting attainable contrast of about 10^{-5}. We hope
that by identifying this problem others will provide a solution.Comment: 23 pages, 13 figures, also posted to
http://www.orfe.princeton.edu/~rvdb/tex/piaaFresnel/ms.pd
Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattice
Finite temperature phase boundary between superfluid phase and normal state
is analytically derived by studying the stability of normal state in rotating
bosonic optical lattice. We also prove that the oscillation behavior of
critical hopping matrix directly follows the upper boundary of Hofstadter
butterfly as the function of effective magnetic field.Comment: 10 pages, 2 figure
Flicker Noise in Bilayer Graphene Transistors
We present the results of the experimental investigation of the low -
frequency noise in bilayer graphene transistors. The back - gated devices were
fabricated using the electron beam lithography and evaporation. The charge
neutrality point for the fabricated transistors was around 10 V. The noise
spectra at frequencies above 10 - 100 Hz were of the 1/f - type with the
spectral density on the order of 10E-23 - 10E-22 A2/Hz at the frequency of 1
kHz. The deviation from the 1/f spectrum at the frequencies below 10 -100 Hz
indicates that the noise is of the carrier - number fluctuation origin due to
the carrier trapping by defects. The Hooge parameter of 10E-4 was extracted for
this type of devices. The gate dependence of the noise spectral density
suggests that the noise is dominated by the contributions from the ungated part
of the device channel and by the contacts. The obtained results are important
for graphene electronic applications
Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons
We compute the contribution of order to the cross
section of a top-antitop pair in association with at least one heavy Standard
Model boson -- , , and Higgs -- by including all effects of QCD, QED,
and weak origin and by working in the automated MadGraph5_aMC@NLO framework.
This next-to-leading order contribution is then combined with that of order
, and with the two dominant lowest-order ones,
and , to obtain phenomenological results
relevant to a 8, 13, and 100~TeV collider.Comment: 27 pages, 8 figure
- …
