56 research outputs found
Factors associated with degree of atopy in Latino children in a nationwide pediatric sample: The Genes-environments and Admixture in Latino Asthmatics (GALA II) study
BackgroundAtopy varies by ethnicity, even within Latino groups. This variation might be due to environmental, sociocultural, or genetic factors.ObjectiveWe sought to examine risk factors for atopy within a nationwide study of US Latino children with and without asthma.MethodsAeroallergen skin test responses were analyzed in 1830 US Latino subjects. Key determinants of atopy included country/region of origin, generation in the United States, acculturation, genetic ancestry, and site to which subjects migrated. Serial multivariate zero-inflated negative binomial regressions stratified by asthma status examined the association of each key determinant variable with the number of positive skin test responses. In addition, the independent effect of each key variable was determined by including all key variables in the final models.ResultsIn baseline analyses African ancestry was associated with 3 times (95% CI, 1.62-5.57) as many positive skin test responses in asthmatic participants and 3.26 times (95% CI, 1.02-10.39) as many positive skin test responses in control participants. Generation and recruitment site were also associated with atopy in crude models. In final models adjusted for key variables, asthmatic patients of Puerto Rican (exp[β] [95% CI], 1.31 [1.02-1.69]) and mixed (exp[β] [95% CI], 1.27 [1.03-1.56]) ethnicity had a greater probability of positive skin test responses compared with Mexican asthmatic patients. Ancestry associations were abrogated by recruitment site but not region of origin.ConclusionsPuerto Rican ethnicity and mixed origin were associated with degree of atopy within US Latino children with asthma. African ancestry was not associated with degree of atopy after adjusting for recruitment site. Local environment variation, represented by site, was associated with degree of sensitization
How Effective are Policies to Reduce Gasoline Consumption? Evaluating a Quasi-Natural Experiment in Spain
Further replication studies of the EVE Consortium meta-analysis identifies 2 asthma risk loci in European Americans
BackgroundGenome-wide association studies of asthma have implicated many genetic risk factors, with well-replicated associations at approximately 10 loci that account for only a small proportion of the genetic risk.ObjectivesWe aimed to identify additional asthma risk loci by performing an extensive replication study of the results from the EVE Consortium meta-analysis.MethodsWe selected 3186 single nucleotide polymorphisms for replication based on the P values from the EVE Consortium meta-analysis. These single nucleotide polymorphisms were genotyped in ethnically diverse replication samples from 9 different studies, totaling 7202 cases, 6426 controls, and 507 case-parent trios. Association analyses were conducted within each participating study, and the resulting test statistics were combined in a meta-analysis.ResultsTwo novel associations were replicated in European Americans: rs1061477 in the KLK3 gene on chromosome 19 (combined odds ratio = 1.18; 95% CI, 1.10-1.25) and rs9570077 (combined odds ratio =1.20; 95% CI, 1.12-1.29) on chromosome 13q21. We could not replicate any additional associations in the African Americans or Latinos.ConclusionsThis extended replication study identified 2 additional asthma risk loci in populations of European descent. The absence of additional loci for African Americans and Latinos highlights the difficulty in replicating associations in admixed populations
Systemic Treatment with CpG-B after Sublethal Rickettsial Infection Induces Mouse Death through Indoleamine 2,3-Dioxygenase (IDO)
Due to its strong immune stimulatory effects through TLR9, CpG-containing oligodeoxynucleotides (CpG ODN) have been tested in multiple clinical trials as vaccine adjuvant for infectious diseases and cancer. However, immune suppression induced by systemic administration of CpGs has been reported recently. In this study, we evaluated the impact of CpGs in an acute rickettsiosis model. We found that systemic treatment with type B CpG (CpG-B), but not type A CpG (CpG-A), at 2 days after sublethal R. australis infection induced mouse death. Although wild-type (WT) B6 and IDO−/− mice showed similar survival rates with three different doses of R. australis infection, treatment with CpG-B after sublethal infection consistently induced higher mortality with greater tissue bacterial loads in WT but not IDO−/− mice. Also, CpG-B treatment promoted the development of higher serum concentrations of proinflammatory cytokines/chemokines through IDO. Furthermore, while T cell-mediated immune responses enhanced by CpG-B were independent of IDO, treatment with CpG-B promoted T cell activation, PD-1 expression and cell apoptosis partially through IDO. A depletion study using anti-mPDCA-1 mAb indicated that plasmacytoid dendritic cells (pDC) were not required for CpG-B-induced death of R. australis-infected mice. Additionally, the results in iNOS−/− mice suggested that nitric oxide (NO) was partially involved in CpG-B-induced death of R. australis-infected mice. Surprisingly, pre-treatment with CpG-B before administration of a lethal dose of R. australis provided effective immunity in WT, IDO−/− and iNOS−/− mice. Taken together, our study provides evidence that CpGs exert complex immunological effects by both IDO-dependent and -independent mechanisms, and that systemic treatment with CpGs before or after infection has a significant and distinct impact on disease outcomes
Haemophilus influenzae Infection Drives IL-17-Mediated Neutrophilic Allergic Airways Disease
A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12–15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses
Whole-Genome Sequencing of Pharmacogenetic Drug Response in Racially Diverse Children with Asthma
RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response.
OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children.
METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR.
MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P \u3c 3.53 × 10
CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations
Whole-genome sequencing of pharmacogenetic drug response in racially diverse children with asthma
RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response.
OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children.
METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR.
MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P \u3c 3.53 × 10-7) and suggestive (P \u3c 7.06 × 10-6) loci near genes previously associated with lung capacity (DNAH5), immunity (NFKB1 and PLCB1), and β-adrenergic signaling (ADAMTS3 and COX18). Functional analyses of the BDR-associated SNP in NFKB1 revealed potential regulatory function in bronchial smooth muscle cells. The SNP is also an expression quantitative trait locus for a neighboring gene, SLC39A8. The lack of other asthma study populations with BDR and whole-genome sequencing data on minority children makes it impossible to perform replication of our rare variant associations. Minority underrepresentation also poses significant challenges to identify age-matched and population-matched cohorts of sufficient sample size for replication of our common variant findings.
CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations
Recommended from our members
Further replication studies of the EVE Consortium meta-analysis identifies 2 asthma risk loci in European Americans
Background: Genome-wide association studies of asthma have implicated many genetic risk factors, with well-replicated associations at approximately 10 loci that account for only a small proportion of the genetic risk.
Objectives—We aimed to identify additional asthma risk loci by performing an extensive replication study of the results from the EVE Consortium meta-analysis.
Methods: We selected 3186 SNPs for replication based on the p-values from the EVE Consortium meta-analysis. These SNPs were genotyped in ethnically diverse replication samples from nine different studies, totaling to 7202 cases, 6426 controls, and 507 case-parent trios. Association analyses were conducted within each participating study and the resulting test statistics were combined in a meta-analysis.
Results: Two novel associations were replicated in European Americans: rs1061477 in the KLK3 gene on chromosome 19 (combined OR = 1.18; 95% CI 1.10 – 1.25) and rs9570077 (combined OR =1.20 95% CI 1.12–1.29) on chromosome 13q21. We could not replicate any additional associations in the African American or Latino individuals.
Conclusions: This extended replication study identified two additional asthma risk loci in populations of European descent. The absence of additional loci for African Americans and Latino individuals highlights the difficulty in replicating associations in admixed populations
Discordance Between Skin Prick Test and Aeroallergen Specific IgE in Children Under the Age of Four.
The Relationship Between Pediatric Attention-Deficit/Hyperactivity Disorder Symptoms and Asthma Management
PURPOSE: Children with comorbid Attention-Deficit/Hyperactivity Disorder (ADHD) and asthma are at an increased risk for adverse health outcomes and reduced quality of life. The objective of these analyses was to examine if self-reported ADHD symptoms in children with asthma are associated with asthma control, asthma controller medication adherence, quick relief medication use, pulmonary function, and acute healthcare utilization. METHODS: We analyzed data from a larger study testing a behavioral intervention for Black and Latinx children with asthma aged 10-17 years and their caregivers. Participants completed the Conners-3AI self-report assessment for ADHD symptoms. Asthma medication usage data were collected for 3 weeks following baseline via electronic devices fitted to participants\u27 asthma medications. Other outcome measures included the Asthma Control Test, self-reported healthcare utilization, and pulmonary function measured by spirometry testing. RESULTS: The study sample consisted of 302 pediatric participants with an average age of 12.8 years. Increased ADHD symptoms were directly associated with reduced adherence to controller medications, but no evidence of mediation was observed. Direct effects of ADHD symptoms on quick-relief medication use, health care utilization, asthma control, or pulmonary function were not observed. However, the effect of ADHD symptoms on emergency room visits was mediated by controller medication adherence. DISCUSSION: ADHD symptoms were associated with significantly reduced asthma controller medication adherence and indirectly with emergency room visits. There are significant potential clinical implications to these findings, including the need for the development of interventions for pediatric asthma patients with ADHD
- …
