8,263 research outputs found

    Scattering properties of weakly bound dimers of fermionic atoms

    Get PDF
    We consider weakly bound diatomic molecules (dimers) formed in a two-component atomic Fermi gas with a large positive scattering length for the interspecies interaction. We develop a theoretical approach for calculating atom-dimer and dimer-dimer elastic scattering and for analyzing the inelastic collisional relaxation of the molecules into deep bound states. This approach is based on the single-channel zero range approximation, and we find that it is applicable in the vicinity of a wide two-body Feshbach resonance. Our results draw prospects for various interesting manipulations of weakly bound dimers of fermionic atoms.Comment: extended version of cond-mat/030901

    A cesium gas strongly confined in one dimension : sideband cooling and collisional properties

    Get PDF
    We study one-dimensional sideband cooling of Cesium atoms strongly confined in a far-detuned optical lattice. The Lamb-Dicke regime is achieved in the lattice direction whereas the transverse confinement is much weaker. The employed sideband cooling method, first studied by Vuletic et al.\cite{Vule98}, uses Raman transitions between Zeeman levels and produces a spin-polarized sample. We present a detailed study of this cooling method and investigate the role of elastic collisions in the system. We accumulate 83(5)83(5)% of the atoms in the vibrational ground state of the strongly confined motion, and elastic collisions cool the transverse motion to a temperature of 2.8μ2.8 \mu K=0.7ωosc/kB0.7 \hbar\omega_{\rm osc}/k_{\rm B}, where ωosc\omega_{\rm osc} is the oscillation frequency in the strongly confined direction. The sample then approaches the regime of a quasi-2D cold gas. We analyze the limits of this cooling method and propose a dynamical change of the trapping potential as a mean of cooling the atomic sample to still lower temperatures. Measurements of the rate of thermalization between the weakly and strongly confined degrees of freedom are compatible with the zero energy scattering resonance observed previously in weak 3D traps. For the explored temperature range the measurements agree with recent calculations of quasi-2D collisions\cite{Petr01}. Transparent analytical models reproduce the expected behavior for kBTωosck_{\rm B}T \gg \hbar \omega_{\rm osc} and also for kBTωosck_{\rm B}T \ll \hbar \omega_{\rm osc} where the 2D features are prominent.Comment: 18 pages, 12 figure

    Newton algorithm for Hamiltonian characterization in quantum control

    Full text link
    We propose a Newton algorithm to characterize the Hamiltonian of a quantum system interacting with a given laser field. The algorithm is based on the assumption that the evolution operator of the system is perfectly known at a fixed time. The computational scheme uses the Crank-Nicholson approximation to explicitly determine the derivatives of the propagator with respect to the Hamiltonians of the system. In order to globalize this algorithm, we use a continuation method that improves its convergence properties. This technique is applied to a two-level quantum system and to a molecular one with a double-well potential. The numerical tests show that accurate estimates of the unknown parameters are obtained in some cases. We discuss the numerical limits of the algorithm in terms of basin of convergence and non uniqueness of the solution.Comment: 18 pages, 7 figure

    Crystalline phase of strongly interacting Fermi mixtures

    Full text link
    We show that the system of weakly bound molecules of heavy and light fermionic atoms is characterized by a long-range intermolecular repulsion and can undergo a gas-crystal quantum transition if the mass ratio exceeds a critical value. For the critical mass ratio above 100 obtained in our calculations, this crystalline order can be observed as a superlattice in an optical lattice for heavy atoms with a small filling factor. We also find that this novel system is sufficiently stable with respect to molecular relaxation into deep bound states and to the process of trimer formation.Comment: 4 pages, 1 color figure, published versio

    Collective oscillations of a trapped Fermi gas near a Feshbach resonance

    Full text link
    The frequencies of the collective oscillations of a harmonically trapped Fermi gas interacting with large scattering lengths are calculated at zero temperature using hydrodynamic theory. Different regimes are considered, including the molecular Bose-Einstein condensate and the unitarity limit for collisions. We show that the frequency of the radial compressional mode in an elongated trap exhibits a pronounced non monotonous dependence on the scattering length, reflecting the role of the interactions in the equation of state.Comment: 3 pages, including 1 figur

    Ramsey interferometry with oppositely detuned fields

    Get PDF
    We report a narrowing of the interference pattern obtained in an atomic Ramsey interferometer if the two separated fields have different frequency and their phase difference is controlled. The width of the Ramsey fringes depends inversely on the free flight time of ground state atoms before entering the first field region in addition to the time between the fields. The effect is stable also for atomic wavepackets with initial position and momentum distributions and for realistic mode functions.Comment: 6 pages, 6 figure

    Measuring the one-particle excitations of ultracold fermionic atoms by stimulated Raman spectroscopy

    Full text link
    We propose a Raman spectroscopy technique which is able to probe the one-particle Green's function, the Fermi surface, and the quasiparticles of a gas of strongly interacting ultracold atoms. We give quantitative examples of experimentally accessible spectra. The efficiency of the method is validated by means of simulated images for the case of a usual Fermi liquid as well as for more exotic states: specific signatures of e.g. a d-wave pseudo-gap are clearly visible.Comment: 5 pages, 3 figures accepted for publication at Phys. Rev. Letter

    Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    Full text link
    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.Comment: 5 pages, 5 figure
    corecore