8,263 research outputs found
Scattering properties of weakly bound dimers of fermionic atoms
We consider weakly bound diatomic molecules (dimers) formed in a
two-component atomic Fermi gas with a large positive scattering length for the
interspecies interaction. We develop a theoretical approach for calculating
atom-dimer and dimer-dimer elastic scattering and for analyzing the inelastic
collisional relaxation of the molecules into deep bound states. This approach
is based on the single-channel zero range approximation, and we find that it is
applicable in the vicinity of a wide two-body Feshbach resonance. Our results
draw prospects for various interesting manipulations of weakly bound dimers of
fermionic atoms.Comment: extended version of cond-mat/030901
A cesium gas strongly confined in one dimension : sideband cooling and collisional properties
We study one-dimensional sideband cooling of Cesium atoms strongly confined
in a far-detuned optical lattice. The Lamb-Dicke regime is achieved in the
lattice direction whereas the transverse confinement is much weaker. The
employed sideband cooling method, first studied by Vuletic et al.\cite{Vule98},
uses Raman transitions between Zeeman levels and produces a spin-polarized
sample. We present a detailed study of this cooling method and investigate the
role of elastic collisions in the system. We accumulate of the atoms
in the vibrational ground state of the strongly confined motion, and elastic
collisions cool the transverse motion to a temperature of K=, where is the oscillation
frequency in the strongly confined direction. The sample then approaches the
regime of a quasi-2D cold gas. We analyze the limits of this cooling method and
propose a dynamical change of the trapping potential as a mean of cooling the
atomic sample to still lower temperatures. Measurements of the rate of
thermalization between the weakly and strongly confined degrees of freedom are
compatible with the zero energy scattering resonance observed previously in
weak 3D traps. For the explored temperature range the measurements agree with
recent calculations of quasi-2D collisions\cite{Petr01}. Transparent analytical
models reproduce the expected behavior for and also for where the 2D
features are prominent.Comment: 18 pages, 12 figure
Newton algorithm for Hamiltonian characterization in quantum control
We propose a Newton algorithm to characterize the Hamiltonian of a quantum
system interacting with a given laser field. The algorithm is based on the
assumption that the evolution operator of the system is perfectly known at a
fixed time. The computational scheme uses the Crank-Nicholson approximation to
explicitly determine the derivatives of the propagator with respect to the
Hamiltonians of the system. In order to globalize this algorithm, we use a
continuation method that improves its convergence properties. This technique is
applied to a two-level quantum system and to a molecular one with a double-well
potential. The numerical tests show that accurate estimates of the unknown
parameters are obtained in some cases. We discuss the numerical limits of the
algorithm in terms of basin of convergence and non uniqueness of the solution.Comment: 18 pages, 7 figure
Crystalline phase of strongly interacting Fermi mixtures
We show that the system of weakly bound molecules of heavy and light
fermionic atoms is characterized by a long-range intermolecular repulsion and
can undergo a gas-crystal quantum transition if the mass ratio exceeds a
critical value. For the critical mass ratio above 100 obtained in our
calculations, this crystalline order can be observed as a superlattice in an
optical lattice for heavy atoms with a small filling factor. We also find that
this novel system is sufficiently stable with respect to molecular relaxation
into deep bound states and to the process of trimer formation.Comment: 4 pages, 1 color figure, published versio
Collective oscillations of a trapped Fermi gas near a Feshbach resonance
The frequencies of the collective oscillations of a harmonically trapped
Fermi gas interacting with large scattering lengths are calculated at zero
temperature using hydrodynamic theory. Different regimes are considered,
including the molecular Bose-Einstein condensate and the unitarity limit for
collisions. We show that the frequency of the radial compressional mode in an
elongated trap exhibits a pronounced non monotonous dependence on the
scattering length, reflecting the role of the interactions in the equation of
state.Comment: 3 pages, including 1 figur
Ramsey interferometry with oppositely detuned fields
We report a narrowing of the interference pattern obtained in an atomic
Ramsey interferometer if the two separated fields have different frequency and
their phase difference is controlled. The width of the Ramsey fringes depends
inversely on the free flight time of ground state atoms before entering the
first field region in addition to the time between the fields. The effect is
stable also for atomic wavepackets with initial position and momentum
distributions and for realistic mode functions.Comment: 6 pages, 6 figure
Measuring the one-particle excitations of ultracold fermionic atoms by stimulated Raman spectroscopy
We propose a Raman spectroscopy technique which is able to probe the
one-particle Green's function, the Fermi surface, and the quasiparticles of a
gas of strongly interacting ultracold atoms. We give quantitative examples of
experimentally accessible spectra. The efficiency of the method is validated by
means of simulated images for the case of a usual Fermi liquid as well as for
more exotic states: specific signatures of e.g. a d-wave pseudo-gap are clearly
visible.Comment: 5 pages, 3 figures accepted for publication at Phys. Rev. Letter
Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection
Calibration sources are an indispensable tool for all detectors. In acoustic
particle detection the goal of a calibration source is to mimic neutrino
signatures as expected from hadronic cascades. A simple and promising method
for the emulation of neutrino signals are piezo ceramics. We will present
results of measruements and simulations on these piezo ceramics.Comment: 5 pages, 5 figure
- …
