29,028 research outputs found
Effect of inelastic collisions on multiphonon Raman scattering in graphene
We calculate the probabilities of two- and four-phonon Raman scattering in
graphene and show how the relative intensities of the overtone peaks encode
information about relative rates of different inelastic processes electrons are
subject to. If the most important processes are electron-phonon and
electron-electron scattering, the rate of the latter can be deduced from the
Raman spectra
Deconfinement in the Quark Meson Coupling Model
The Quark Meson Coupling Model which describes nuclear matter as a collection
of non-overlapping MIT bags interacting by the self-consistent exchange of
scalar and vector mesons is used to study nuclear matter at finite temperature.
In its modified version, the density dependence of the bag constant is
introduced by a direct coupling between the bag constant and the scalar mean
field. In the present work, the coupling of the scalar mean field with the
constituent quarks is considered exactly through the solution of the Dirac
equation. Our results show that a phase transition takes place at a critical
temperature around 200 MeV in which the scalar mean field takes a nonzero value
at zero baryon density. Furthermore it is found that the bag constant decreases
significantly when the temperature increases above this critical temperature
indicating the onset of quark deconfinement.Comment: LaTeX/TeX 15 pages (zk2.tex)+ 6 figures in TeX forma
Properties of Color-Coulomb String Tension
We study the properties of the color-Coulomb string tension obtained from the
instantaneous part of gluon propagators in Coulomb gauge using quenched SU(3)
lattice simulation.
In the confinement phase, the dependence of the color-Coulomb string tension
on the QCD coupling constant is smaller than that of the Wilson loop string
tension. On the other hand, in the deconfinement phase, the color-Coulomb
string tension does not vanish even for , the temperature
dependence of which is comparable with the magnetic scaling, dominating the
high temperature QCD. Thus, the color-Coulomb string tension is not an order
parameter of QGP phase transition.Comment: 17 pages, 5 figures; one new figure added, typos corrected, version
to appear in PR
Hyper-elliptic Nambu flow associated with integrable maps
We study hyper-elliptic Nambu flows associated with some dimensional maps
and show that discrete integrable systems can be reproduced as flows of this
class.Comment: 13 page
Dirac-Sobolev inequalities and estimates for the zero modes of massless Dirac operators
The paper analyses the decay of any zero modes that might exist for a
massless Dirac operator H:= \ba \cdot (1/i) \bgrad + Q, where is -matrix-valued and of order O(|\x|^{-1}) at infinity. The approach
is based on inversion with respect to the unit sphere in and
establishing embedding theorems for Dirac-Sobolev spaces of spinors which
are such that and lie in Comment: 11 page
Coupled ion - nanomechanical systems
We study ions in a nanotrap, where the electrodes are nanomechanical
resonantors. The ions play the role of a quantum optical system which acts as a
probe and control, and allows entanglement with or between nanomechanical
resonators.Comment: 4 pages, 2 figures, submitted for publicatio
Cosmic ray intensity and the tilt of the neutral sheet
Recent publications have related long-term variations in cosmic ray intensity at the Earth with long term variations in the tilt of the neutral sheet in the inner heliosphere. The tilt of the neutral sheet from 1971 to 1974 is compared with the cosmic ray intensity at Earth, recorded by the Mt. Washington neutron monitor. The remarkable large decreases in cosmic ray intensity which occurred in 1973 and 1974 correlate well with excursions in the tilt of the neutral sheet which occurred earlier during these same two years
- …