2,628 research outputs found
Bose-Einstein Condensation and strong-correlation behavior of phonons in ion traps
We show that the dynamics of phonons in a set of trapped ions interacting
with lasers is described by a Bose-Hubbard model whose parameters can be
externally adjusted. We investigate the possibility of observing several
quantum many-body phenomena, including (quasi) Bose-Einstein condensation as
well as a superfluid-Mott insulator quantum phase transition.Comment: 5 pages, 3 figure
Mesoscopic mean-field theory for spin-boson chains in quantum optical systems
We present a theoretical description of a system of many spins strongly coupled to a bosonic chain. We rely on the use of a spin-wave theory describing the Gaussian fluctuations around the mean-field solution, and focus on spin-boson chains arising as a generalization of the Dicke Hamiltonian. Our model is motivated by experimental setups such as trapped ions, or atoms/qubits coupled to cavity arrays. This situation corresponds to the cooperative (E⊗β) Jahn-Teller distortion studied in solid-state physics. However, the ability to tune the parameters of the model in quantum optical setups opens up a variety of novel intriguing situations. The main focus of this paper is to review the spin-wave theoretical description of this problem as well as to test the validity of mean-field theory. Our main result is that deviations from mean-field effects are determined by the interplay between magnetic order and mesoscopic cooperativity effects, being the latter strongly size-dependent
Competing many-body interactions in systems of trapped ions
We propose and theoretically analyse an experimental configuration in which
lasers induce 3-spin interactions between trapped ions.By properly choosing the
intensities and frequencies of the lasers, 3-spin couplings may be dominant or
comparable to 2-spin terms and magnetic fields. In this way, trapped ions can
be used to study exotic quantum phases which do not have a counterpart in
nature. We study the conditions for the validity of the effective 3-spin
Hamiltonian, and predict qualitatively the quantum phase diagram of the system.Comment: RevTex4 file, color figure
Collective generation of quantum states of light by entangled atoms
We present a theoretical framework to describe the collective emission of
light by entangled atomic states. Our theory applies to the low excitation
regime, where most of the atoms are initially in the ground state, and relies
on a bosonic description of the atomic excitations. In this way, the problem of
light emission by an ensemble of atoms can be solved exactly, including
dipole-dipole interactions and multiple light scattering. Explicit expressions
for the emitted photonic states are obtained in several situations, such as
those of atoms in regular lattices and atomic vapors. We determine the
directionality of the photonic beam, the purity of the photonic state, and the
renormalization of the emission rates. We also show how to observe collective
phenomena with ultracold atoms in optical lattices, and how to use these ideas
to generate photonic states that are useful in the context of quantum
information.Comment: 15 pages, 10 figure
Detection of Spin Correlations in Optical Lattices by Light Scattering
We show that spin correlations of atoms in an optical lattice can be
reconstructed by coupling the system to the light, and by measuring
correlations between the emitted photons. This principle is the basis for a
method to characterize states in quantum computation and simulation with
optical lattices. As examples, we study the detection of spin correlations in a
quantum magnetic phase, and the characterization of cluster states
Shaping an Itinerant Quantum Field by Dissipation
We show that inducing sidebands in the emission of a single emitter into a
one dimensional waveguide, together with a dissipative re-pumping process, a
photon field is cooled down to a squeezed vacuum. Our method does not require
to be in the strong coupling regime, works with a continuum of propagating
field modes and it may lead to sources of tunable multimode squeezed light in
circuit QED systems.Comment: 4 pages, 3 figure
J. BULCKENS y H. LOMBARTS (dirs.), L 'enseignement de la religion catholique a l'école sécondaire. Enjeux pour la nouvelle Europe, Leuven University Press, Leuven 1993, 264 pp., 15 x 25.
OH+ in Diffuse Molecular Clouds
Near ultraviolet observations of OH+ and OH in diffuse molecular clouds
reveal a preference for different environments. The dominant absorption feature
in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH
column density ratio), while OH follows CN absorption. This distinction
provides new constraints on OH chemistry in these clouds. Since CH+ detections
favor low-density gas with small fractions of molecular hydrogen, this must be
true for OH+ as well, confirming OH+ and H2O+ observations with the Herschel
Space Telescope. Our observed correspondence indicates that the cosmic ray
ionization rate derived from these measurements pertains to mainly atomic gas.
The association of OH absorption with gas rich in CN is attributed to the need
for high enough density and molecular fraction before detectable amounts are
seen. Thus, while OH+ leads to OH production, chemical arguments suggest that
their abundances are controlled by different sets of conditions and that they
coexist with different sets of observed species. Of particular note is that
non-thermal chemistry appears to play a limited role in the synthesis of OH in
diffuse molecular clouds.Comment: 15 pages, 4 figures, to appear in ApJ Letter
- …
