103 research outputs found
An explicit harmonic code for black-hole evolution using excision
We describe an explicit in time, finite-difference code designed to simulate black holes by using the excision method. The code is based upon the harmonic formulation of the Einstein equations and incorporates several features regarding the well-posedness and numerical stability of the initial-boundary problem for the quasilinear wave equation. After a discussion of the equations solved and of the techniques employed, we present a series of testbeds carried out to validate the code. Such tests range from the evolution of isolated black holes to the head-on collision of two black holes and then to a binary black hole inspiral and merger. Besides assessing the accuracy of the code, the inspiral and merger test has revealed that individual apparent horizons can touch and even intersect. This novel feature in the dynamics of the marginally trapped surfaces is unexpected but consistent with theorems on the properties of apparent horizons
Accurate Evolutions of Orbiting Binary Black Holes
We present a detailed analysis of binary black hole evolutions in the last orbit and demonstrate consistent and convergent results for the trajectories of the individual bodies. The gauge choice can significantly affect the overall accuracy of the evolution. It is possible to reconcile certain gauge-dependent discrepancies by examining the convergence limit. We illustrate these results using an initial data set recently evolved by Brügmann et al. [Phys. Rev. Lett. 92, 211101 (2004)]. For our highest resolution and most accurate gauge, we estimate the duration of this data set's last orbit to be approximately 59MADM
Transverse frames for Petrov type I spacetimes: a general algebraic procedure
We develop an algebraic procedure to rotate a general Newman-Penrose tetrad
in a Petrov type I spacetime into a frame with Weyl scalars and
equal to zero, assuming that initially all the Weyl scalars are non
vanishing. The new frame highlights the physical properties of the spacetime.
In particular, in a Petrov Type I spacetime, setting and
to zero makes apparent the superposition of a Coulomb-type effect
with transverse degrees of freedom and .Comment: 10 pages, submitted to Classical Quantum Gravit
Initial data transients in binary black hole evolutions
We describe a method for initializing characteristic evolutions of the
Einstein equations using a linearized solution corresponding to purely outgoing
radiation. This allows for a more consistent application of the characteristic
(null cone) techniques for invariantly determining the gravitational radiation
content of numerical simulations. In addition, we are able to identify the {\em
ingoing} radiation contained in the characteristic initial data, as well as in
the initial data of the 3+1 simulation. We find that each component leads to a
small but long lasting (several hundred mass scales) transient in the measured
outgoing gravitational waves.Comment: 18 pages, 4 figure
An explicit harmonic code for black-hole evolution using excision
We describe an explicit in time, finite-difference code designed to simulate black holes by using the excision method. The code is based upon the harmonic formulation of the Einstein equations and incorporates several features regarding the well-posedness and numerical stability of the initial-boundary problem for the quasilinear wave equation. After a discussion of the equations solved and of the techniques employed, we present a series of testbeds carried out to validate the code. Such tests range from the evolution of isolated black holes to the head-on collision of two black holes and then to a binary black hole inspiral and merger. Besides assessing the accuracy of the code, the inspiral and merger test has revealed that individual apparent horizons can touch and even intersect. This novel feature in the dynamics of the marginally trapped surfaces is unexpected but consistent with theorems on the properties of apparent horizons
Unambiguous determination of gravitational waveforms from binary black hole mergers
Gravitational radiation is properly defined only at future null infinity
(\scri), but in practice it is estimated from data calculated at a finite
radius. We have used characteristic extraction to calculate gravitational
radiation at \scri for the inspiral and merger of two equal mass non-spinning
black holes. Thus we have determined the first unambiguous merger waveforms for
this problem. The implementation is general purpose, and can be applied to
calculate the gravitational radiation, at \scri, given data at a finite
radius calculated in another computation.Comment: 4 pages, 3 figures, published versio
The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search and parameter-estimation algorithms using numerically generated waveforms, and to foster closer collaboration between the numerical relativity and data analysis communities. The first NINJA project used only a small number of injections of short numerical-relativity waveforms, which limited its ability to draw quantitative conclusions. The goal of the NINJA-2 project is to overcome these limitations with long post-Newtonian - numerical relativity hybrid waveforms, large numbers of injections, and the use of real detector data. We report on the submission requirements for the NINJA-2 project and the construction of the waveform catalog. Eight numerical relativity groups have contributed 63 hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. We summarize the techniques used by each group in constructing their submissions. We also report on the procedures used to validate these submissions, including examination in the time and frequency domains and comparisons of waveforms from different groups against each other. These procedures have so far considered only the mode. Based on these studies we judge that the hybrid waveforms are suitable for NINJA-2 studies. We note some of the plans for these investigations
Are moving punctures equivalent to moving black holes?
When simulating the inspiral and coalescence of a binary black-hole system,
special care needs to be taken in handling the singularities. Two main
techniques are used in numerical-relativity simulations: A first and more
traditional one ``excises'' a spatial neighbourhood of the singularity from the
numerical grid on each spacelike hypersurface. A second and more recent one,
instead, begins with a ``puncture'' solution and then evolves the full
3-metric, including the singular point. In the continuum limit, excision is
justified by the light-cone structure of the Einstein equations and, in
practice, can give accurate numerical solutions when suitable discretizations
are used. However, because the field variables are non-differentiable at the
puncture, there is no proof that the moving-punctures technique is correct,
particularly in the discrete case. To investigate this question we use both
techniques to evolve a binary system of equal-mass non-spinning black holes. We
compare the evolution of two curvature 4-scalars with proper time along the
invariantly-defined worldline midway between the two black holes, using
Richardson extrapolation to reduce the influence of finite-difference
truncation errors. We find that the excision and moving-punctures evolutions
produce the same invariants along that worldline, and thus the same spacetimes
throughout that worldline's causal past. This provides convincing evidence that
moving-punctures are indeed equivalent to moving black holes.Comment: 4 pages, 3 eps color figures; v2 = major revisions to introduction &
conclusions based on referee comments, but no change in analysis or result
Beyond the Bowen-York extrinsic curvature for spinning black holes
It is well-known that Bowen-York initial data contain spurious radiation.
Although this ``junk'' radiation has been seen to be small for non-spinning
black-hole binaries in circular orbit, its magnitude increases when the black
holes are given spin. It is possible to reduce the spurious radiation by
applying the puncture approach to multiple Kerr black holes, as we demonstrate
for examples of head-on collisions of equal-mass black-hole binaries.Comment: 10 pages, 2 figures, submitted to special "New Frontiers in Numerical
Relativity" issue of Classical and Quantum Gravit
- …
