4,130 research outputs found
Elastic effects of vacancies in strontium titanate: Short- and long-range strain fields, elastic dipole tensors, and chemical strain
We present a study of the local strain effects associated with vacancy
defects in strontium titanate and report the first calculations of elastic
dipole tensors and chemical strains for point defects in perovskites. The
combination of local and long-range results will enable determination of x-ray
scattering signatures that can be compared with experiments. We find that the
oxygen vacancy possesses a special property -- a highly anisotropic elastic
dipole tensor which almost vanishes upon averaging over all possible defect
orientations. Moreover, through direct comparison with experimental
measurements of chemical strain, we place constraints on the possible defects
present in oxygen-poor strontium titanate and introduce a conjecture regarding
the nature of the predominant defect in strontium-poor stoichiometries in
samples grown via pulsed laser deposition. Finally, during the review process,
we learned of recent experimental data, from strontium titanate films deposited
via molecular-beam epitaxy, that show good agreement with our calculated value
of the chemical strain associated with strontium vacancies.Comment: 14 pages, 11 figures, 4 table
The use of hyperspectral imaging for cake moisture prediction
In this paper, hyperspectral imaging is demonstrated to be a valid method for predicting the moisture content of baked sponge cakes. The application of this technology in the cake production environment, empowered by sophisticated signal & image processing techniques and prediction algorithms has the potential to provide on-line, real-time, non-destructive cake moisture monitoring
The effects of superconductor-stabilizer interfacial resistance on quench of a pancake coil made out of coated conductor
We present the results of numerical analysis of normal zone propagation in a
stack of coated conductors which imitates a pancake coil.
Our main purpose is to determine whether the quench protection quality of such
coils can be substantially improved by increased contact resistance between the
superconducting film and the stabilizer. We show that with increased contact
resistance the speed of normal zone propagation increases, the detection of a
normal zone inside the coil becomes possible earlier, when the peak temperature
inside the normal zone is lower, and stability margins shrink. Thus, increasing
contact resistance may become a viable option for improving the prospects of
coated conductors for high magnets applications.Comment: 9 pages, 4 figure
A Framework for Generalising the Newton Method and Other Iterative Methods from Euclidean Space to Manifolds
The Newton iteration is a popular method for minimising a cost function on
Euclidean space. Various generalisations to cost functions defined on manifolds
appear in the literature. In each case, the convergence rate of the generalised
Newton iteration needed establishing from first principles. The present paper
presents a framework for generalising iterative methods from Euclidean space to
manifolds that ensures local convergence rates are preserved. It applies to any
(memoryless) iterative method computing a coordinate independent property of a
function (such as a zero or a local minimum). All possible Newton methods on
manifolds are believed to come under this framework. Changes of coordinates,
and not any Riemannian structure, are shown to play a natural role in lifting
the Newton method to a manifold. The framework also gives new insight into the
design of Newton methods in general.Comment: 36 page
Limits on the Dipole Moments of the -Lepton via the Process $e^{+}e^{-}\to \tau^+ \tau^- \gamma in a Left-Right Symmetric Model
Limits on the anomalous magnetic moment and the electric dipole moment of the
lepton are calculated through the reaction at the -pole and in the framework of a left-right symmetric model.
The results are based on the recent data reported by the L3 Collaboration at
CERN LEP. Due to the stringent limit of the model mixing angle , the
effect of this angle on the dipole moments is quite small.Comment: 15 pages, 3 figure
Exploring Halo Substructure with Giant Stars III: First Results from the Grid Giant Star Survey and Discovery of a Possible Nearby Sagittarius Tidal Structure in Virgo
We describe first results of a spectroscopic probe of selected fields from
the Grid Giant Star Survey. Multifiber spectroscopy of several hundred stars in
a strip of eleven fields along delta approximately -17^{circ}, in the range 12
<~ alpha <~ 17 hours, reveals a group of 8 giants that have kinematical
characteristics differing from the main field population, but that as a group
maintain coherent, smoothly varying distances and radial velocities with
position across the fields. Moreover, these stars have roughly the same
abundance, according to their MgH+Mgb absorption line strengths. Photometric
parallaxes place these stars in a semi-loop structure, arcing in a contiguous
distribution between 5.7 and 7.9 kpc from the Galactic center. The spatial,
kinematical, and abundance coherence of these stars suggests that they are part
of a diffuse stream of tidal debris, and one roughly consistent with a wrapped,
leading tidal arm of the Sagittarius dwarf spheroidal galaxy.Comment: 8 pages including 4 figures. Accepted for publication in ApJ
The politics of IMF–EU cooperation : institutional change from the Maastricht Treaty to the launch of the Euro
How do regional changes affect the process of global governance? This article addresses this question by examining how the International Monetary Fund (IMF) responded to the challenges presented by Economic and Monetary Union (EMU) between the signing of the Maastricht Treaty in 1992 and the launch of the euro in 1999. Based on primary research from the IMF archives, the article illustrates how the IMF's efforts to reconfigure its relationship with European institutions evolved gradually through a logic of incremental change, despite initial opposition from member states. The article concludes that bureaucratic actors within international organizations will take advantage of informal avenues for promoting a new agenda when this fits with shared conceptions of an organization's mandate. The exercise of informal influence by advocates for change within an international organization can limit the options available to states in formal decision-making processes, even when these options cut across state preferences
Constraints on the parameters of the Left Right Mirror Model
We study some phenomenological constraints on the parameters of a left right
model with mirror fermions (LRMM) that solves the strong CP problem. In
particular, we evaluate the contribution of mirror neutrinos to the invisible Z
decay width (\Gamma_Z^{inv}), and we find that the present experimental value
on \Gamma_Z^{inv}, can be used to place an upper bound on the Z-Z' mixing angle
that is consistent with limits obtained previously from other low-energy
observables. In this model the charged fermions that correspond to the standard
model (SM) mix with its mirror counterparts. This mixing, simultaneously with
the Z-Z' one, leads to modifications of the \Gamma(Z --> f \bar{f}) decay
width. By comparing with LEP data, we obtain bounds on the standard-mirror
lepton mixing angles. We also find that the bottom quark mixing parameters can
be chosen to fit the experimental values of R_b, and the resulting values for
the Z-Z' mixing angle do not agree with previous bounds. However, this
disagreement disappears if one takes the more recent ALEPH data.Comment: 7 pages, 2 figures, REVTe
Scaling property of the critical hopping parameters for the Bose-Hubbard model
Recently precise results for the boundary between the Mott insulator phase
and the superfluid phase of the homogeneous Bose-Hubbard model have become
available for arbitrary integer filling factor g and any lattice dimension d >
1. We use these data for demonstrating that the critical hopping parameters
obey a scaling relationship which allows one to map results for different g
onto each other. Unexpectedly, the mean-field result captures the dependence of
the exact critical parameters on the filling factor almost fully. We also
present an approximation formula which describes the critical parameters for d
> 1 and any g with high accuracy.Comment: 5 pages, 5 figures. to appear in EPJ
Molecular-orbital-free algorithm for excited states in time-dependent perturbation theory
A non-linear conjugate gradient optimization scheme is used to obtain
excitation energies within the Random Phase Approximation (RPA). The solutions
to the RPA eigenvalue equation are located through a variational
characterization using a modified Thouless functional, which is based upon an
asymmetric Rayleigh quotient, in an orthogonalized atomic orbital
representation. In this way, the computational bottleneck of calculating
molecular orbitals is avoided. The variational space is reduced to the
physically-relevant transitions by projections. The feasibility of an RPA
implementation scaling linearly with system size, N, is investigated by
monitoring convergence behavior with respect to the quality of initial guess
and sensitivity to noise under thresholding, both for well- and ill-conditioned
problems. The molecular- orbital-free algorithm is found to be robust and
computationally efficient providing a first step toward a large-scale, reduced
complexity calculation of time-dependent optical properties and linear
response. The algorithm is extensible to other forms of time-dependent
perturbation theory including, but not limited to, time-dependent Density
Functional theory.Comment: 9 pages, 7 figure
- …
