45 research outputs found
Artificial Intelligence for the Electron Ion Collider (AI4EIC)
The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the
strong force, is expected to begin commissioning its first experiments in 2028.
This is an opportune time for artificial intelligence (AI) to be included from
the start at this facility and in all phases that lead up to the experiments.
The second annual workshop organized by the AI4EIC working group, which
recently took place, centered on exploring all current and prospective
application areas of AI for the EIC. This workshop is not only beneficial for
the EIC, but also provides valuable insights for the newly established ePIC
collaboration at EIC. This paper summarizes the different activities and R&D
projects covered across the sessions of the workshop and provides an overview
of the goals, approaches and strategies regarding AI/ML in the EIC community,
as well as cutting-edge techniques currently studied in other experiments.Comment: 27 pages, 11 figures, AI4EIC workshop, tutorials and hackatho
ATHENA detector proposal - a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider
ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity.This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges
Artificial Intelligence for the Electron Ion Collider (AI4EIC)
The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the strong force, is expected to begin commissioning its first experiments in 2028. This is an opportune time for artificial intelligence (AI) to be included from the start at this facility and in all phases that lead up to the experiments. The second annual workshop organized by the AI4EIC working group, which recently took place, centered on exploring all current and prospective application areas of AI for the EIC. This workshop is not only beneficial for the EIC, but also provides valuable insights for the newly established ePIC collaboration at EIC. This paper summarizes the different activities and R and D projects covered across the sessions of the workshop and provides an overview of the goals, approaches and strategies regarding AI/ML in the EIC community, as well as cutting-edge techniques currently studied in other experiments
Recommended from our members
Artificial Intelligence for the Electron Ion Collider (AI4EIC)
The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the strong force, is expected to begin commissioning its first experiments in 2028. This is an opportune time for artificial intelligence (AI) to be included from the start at this facility and in all phases that lead up to the experiments. The second annual workshop organized by the AI4EIC working group, which recently took place, centered on exploring all current and prospective application areas of AI for the EIC. This workshop is not only beneficial for the EIC, but also provides valuable insights for the newly established ePIC collaboration at EIC. This paper summarizes the different activities and R and D projects covered across the sessions of the workshop and provides an overview of the goals, approaches and strategies regarding AI/ML in the EIC community, as well as cutting-edge techniques currently studied in other experiments
Precision studies of QCD in the low energy domain of the EIC
peer reviewedThis White Paper aims at highlighting the important benefits in the science reach of the EIC. High luminosity operation is generally desirable, as it enables producing and harvesting scientific results in a shorter time period. It becomes crucial for programs that would require many months or even years of operation at lower luminosity
ATHENA detector proposal — a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider
ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges