156 research outputs found
Controlling two-species Mott-insulator phses in an optical lattice to form an array of dipolar molecules
We consider the transfer of a two-species Bose-Einstein condensate into an
optical lattice with a density such that that a Mott-insulator state with one
atom per species per lattice site is obtained in the deep lattice regime.
Depending on collision parameters the result could be either a `mixed' or a
`separated' Mott-insulator phase. Such a `mixed' two-species insulator could
then be photo-associated into an array of dipolar molecules suitable for
quantum computation or the formation of a dipolar molecular condensate. For the
case of a Rb-K two-species BEC, however, the large inter-species
scattering length makes obtaining the desired `mixed' Mott insulator phase
difficult. To overcome this difficulty we investigate the effect of varying the
lattice frequency on the mean-field interaction and find a favorable parameter
regime under which a lattice of dipolar molecules could be generated
Mott insulators in an optical lattice with high filling factors
We discuss the superfluid to Mott insulator transition of an atomic Bose gas
in an optical lattice with high filling factors. We show that also in this
multi-band situation, the long-wavelength physics is described by a single-band
Bose-Hubbard model. We determine the many-body renormalization of the tunneling
and interaction parameters in the effective Bose-Hubbard Hamiltonian, and
consider the resulting model at nonzero temperatures. We show that in
particular for a one or two-dimensional optical lattice, the Mott insulator
phase is more difficult to realize than anticipated previously.Comment: 5 pages, 3 figures, title changed, major restructuring, resubmitted
to PR
Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit
Squeezing of quantum fluctuations by means of entanglement is a well
recognized goal in the field of quantum information science and precision
measurements. In particular, squeezing the fluctuations via entanglement
between two-level atoms can improve the precision of sensing, clocks,
metrology, and spectroscopy. Here, we demonstrate 3.4 dB of metrologically
relevant squeezing and entanglement for ~ 10^5 cold cesium atoms via a quantum
nondemolition (QND) measurement on the atom clock levels. We show that there is
an optimal degree of decoherence induced by the quantum measurement which
maximizes the generated entanglement. A two-color QND scheme used in this paper
is shown to have a number of advantages for entanglement generation as compared
to a single color QND measurement.Comment: 6 pages+suppl, PNAS forma
Thermodynamics of quantum degenerate gases in optical lattices
The entropy-temperature curves are calculated for non-interacting Bose and
Fermi gases in a 3D optical lattice. These curves facilitate understanding of
how adiabatic changes in the lattice depth affect the temperature, and we
demonstrate regimes where the atomic sample can be significantly heated or
cooled by the loading process. We assess the effects of interactions on a Bose
gas in a deep optical lattice, and show that interactions ultimately limit the
extent of cooling that can occur during lattice loading.Comment: 6 pages, 4 figures. Submitted to proceedings of Laser Physics 2006
Worksho
Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose-Einstein condensates
By colliding two Bose-Einstein condensates we have observed strong bosonic
stimulation of the elastic scattering process. When a weak input beam was
applied as a seed, it was amplified by a factor of 20. This large gain atomic
four-wave mixing resulted in the generation of two macroscopically occupied
pair-correlated atomic beams.Comment: Please take eps files for best details in figure
Ferromagnetism in a lattice of Bose condensates
We show that an ensemble of spinor Bose-Einstein condensates confined in a
one dimensional optical lattice can undergo a ferromagnetic phase transition
and spontaneous magnetization arises due to the magnetic dipole-dipole
interaction. This phenomenon is analogous to ferromagnetism in solid state
physics, but occurs with bosons instead of fermions.Comment: 4 pages, 2 figure
Bragg spectroscopy of a cigar shaped Bose condensate in optical lattices
We study properties of excited states of an array of weakly coupled
quasi-two-dimensional Bose condensates by using the hydrodynamic theory. We
calculate multibranch Bogoliubov-Bloch spectrums and its corresponding
eigenfunctions. The spectrum of the axial excited states and its eigenfunctions
strongly depends on the coupling among various discrete radial modes within a
given symmetry. This mode coupling is due to the presence of radial trapping
potential. The multibranch nature of the Bogoliubov-Bloch spectrum and its
dependence on the mode-coupling can be realized by analyzing dynamic structure
factor and momentum transferred to the system in Bragg spectroscopy
experiments. We also study dynamic structure factor and momentum transferred to
the condensate due to the Bragg spectroscopy experiment.Comment: 7 pages, 5 figures, to appear in Journal of Physics B: Atomic,
Molecular & Optical Physic
Mott insulators in strong electric fields
Recent experiments on ultracold atomic gases in an optical lattice potential
have produced a Mott insulating state of Rb atoms. This state is stable to a
small applied potential gradient (an `electric' field), but a resonant response
was observed when the potential energy drop per lattice spacing (E), was close
to the repulsive interaction energy (U) between two atoms in the same lattice
potential well. We identify all states which are resonantly coupled to the Mott
insulator for E close to U via an infinitesimal tunneling amplitude between
neighboring potential wells. The strong correlation between these states is
described by an effective Hamiltonian for the resonant subspace. This
Hamiltonian exhibits quantum phase transitions associated with an Ising density
wave order, and with the appearance of superfluidity in the directions
transverse to the electric field. We suggest that the observed resonant
response is related to these transitions, and propose experiments to directly
detect the order parameters. The generalizations to electric fields applied in
different directions, and to a variety of lattices, should allow study of
numerous other correlated quantum phases.Comment: 17 pages, 14 figures; (v2) minor additions and new reference
- …