93 research outputs found

    Pressure-induced isostructural phase transition of metal-doped silicon clathrates

    Full text link
    We propose an atomistic model for the pressure-induced isostructural phase transition of metal-doped silicon clathrates, Ba8Si46 and K8Si46, that has been observed at 14 GPa and 23 GPa, respectively. The model explains successfully the equation of state, transition pressure, change of Raman spectra and dependence on the doped cations as well as the effects of substituting Si(6c) atoms with noble metals.Comment: 5 pages, two coumn, 5 figures. See http://www.iitaka.org/down.html for more informatio

    Diamond and β\beta-tin structures of Si studied with quantum Monte Carlo calculations

    Full text link
    We have used diffusion quantum Monte Carlo (DMC) calculations to study the pressure-induced phase transition from the diamond to β\beta-tin structure in silicon. The calculations employ the pseudopotential technique and systematically improvable B-spline basis sets. We show that in order to achieve a precision of 1 GPa in the transition pressure the non-cancelling errors in the energies of the two structures must be reduced to 30 meV/atom. Extensive tests on system size errors, non-local pseudopotential errors, basis-set incompleteness errors, and other sources of error, performed on periodically repeated systems of up to 432 atoms, show that all these errors together can be reduced to well below 30 meV/atom. The calculated DMC transition pressure is about 3-4 GPa higher than the accepted experimental range of values, and we argue that the discrepancy may be due to the fixed-node error inherent in DMC techniques.Comment: 10 pages, 4 figure

    Linear response results for phonons and electron-phonon coupling in hcp Sc - spin fluctuations and implications for superconductivity

    Full text link
    We present a study of the electronic structure, phonon frequencies and electron-phonon coupling in hcp Sc under pressure. The electron-phonon coupling constant is found to increase steadily with pressure in the hcp phase, until the pressure reaches a value where the hcp phase becomes unstable. Calculations for the normal pressure c/ac/a ratio predict a phase change somewhere between calculated pressures of 22 and 30 GPa. The calculated frequencies for the equilibrium hcp lattice parameters are in good agreement with the inelastic neutron scattering results. From the measured value of the electronic specific heat constant and the calculated values of the Fermi level density of states and electron-phonon coupling constant, we conclude that the electron-paramagnon coupling constant in hcp Sc should be comparable to the electron-phonon coupling constant. This indicates that the spin fluctuation effects are strong enough to suppress superconductivity completely in hcp Sc. Based on estimates of the electron-paramagnon coupling constants and the calculated or estimated electron-phonon coupling constants, we argue that the hcp phase may become superconducting with a very low transition temperature immediately prior to the transition to the Sc-II phase and that the Sc-II phase should indeed be superconducting.Comment: To appear in Journal of Physics: Condens. Matter. This is a substantially revised version of an earlier submission (arXiv:0706.3728v1 [cond-mat.supr-con] 25 Jun 2007) which was withdrawn due to some errors in the discussion. The revised version addresses those errors and includes additional result

    Consistent Anisotropic Repulsions for Simple Molecules

    Full text link
    We extract atom-atom potentials from the effective spherical potentials that suc cessfully model Hugoniot experiments on molecular fluids, e.g., O2O_2 and N2N_2. In the case of O2O_2 the resulting potentials compare very well with the atom-atom potentials used in studies of solid-state propertie s, while for N2N_2 they are considerably softer at short distances. Ground state (T=0K) and room temperatu re calculations performed with the new NNN-N potential resolve the previous discrepancy between experimental and theoretical results.Comment: RevTeX, 5 figure

    Raman spectrum and lattice parameters of MgB2 as a function of pressure

    Get PDF
    We report Raman spectra and synchrotron x-ray diffraction measurements of lattice parameters of polycrystalline MgB2 under hydrostatic pressure conditions up to 15 GPa. An anomalously broadened Raman band at 620 cm-1 is observed that exhibits a large linear pressure shift of its frequency. The large mode damping and Gruneisen parameter indicate a highly anharmonic nature of the mode, broadly consistent with theoretical predictions for the E2g in-plane boron stretching mode. The results obtained may provide additional constraints on the electron-phonon coupling in the system.Comment: 3 pages, 3 figure

    Ab initio study of the beta$-tin->Imma->sh phase transitions in silicon and germanium

    Full text link
    We have investigated the structural sequence of the high-pressure phases of silicon and germanium. We have focussed on the cd->beta-tin->Imma->sh phase transitions. We have used the plane-wave pseudopotential approach to the density-functional theory implemented within the Vienna ab-initio simulation package (VASP). We have determined the equilibrium properties of each structure and the values of the critical parameters including a hysteresis effect at the phase transitions. The order of the phase transitions has been obtained alternatively from the pressure dependence of the enthalpy and of the internal structure parameters. The commonly used tangent construction is shown to be very unreliable. Our calculations identify a first-order phase transition from the cd to the beta-tin and from the Imma to the sh phase, and they indicate the possibility of a second-order phase-transition from the beta-tin to the Imma phase. Finally, we have derived the enthalpy barriers between the phases.Comment: 12 pages, 16 figure

    High-Pressure Amorphous Nitrogen

    Full text link
    The phase diagram and stability limits of diatomic solid nitrogen have been explored in a wide pressure--temperature range by several optical spectroscopic techniques. A newly characterized narrow-gap semiconducting phase η\eta has been found to exist in a range of 80--270 GPa and 10--510 K. The vibrational and optical properties of the η\eta phase produced under these conditions indicate that it is largely amorphous and back transforms to a new molecular phase. The band gap of the η\eta phase is found to decrease with pressure indicating possible metallization by band overlap above 280 GPa.Comment: 5 pages, 4 figure

    Simple Metals at High Pressure

    Full text link
    In this lecture we review high-pressure phase transition sequences exhibited by simple elements, looking at the examples of the main group I, II, IV, V, and VI elements. General trends are established by analyzing the changes in coordination number on compression. Experimentally found phase transitions and crystal structures are discussed with a brief description of the present theoretical picture.Comment: 22 pages, 4 figures, lecture notes for the lecture given at the Erice course on High-Pressure Crystallography in June 2009, Sicily, Ital

    Mechanical Deformation Induced in Si and GaN Under Berkovich Nanoindentation

    Get PDF
    Details of Berkovich nanoindentation-induced mechanical deformation mechanisms of single-crystal Si(100) and the metal-organic chemical-vapor deposition (MOCVD) derived GaN thin films have been systematic investigated by means of micro-Raman spectroscopy and cross-sectional transmission electron microscopy (XTEM) techniques. The XTEM samples were prepared by using focused ion beam (FIB) milling to accurately position the cross-section of the nanoindented area. The behaviors of the discontinuities displayed in the loading and unloading segments of the load-displacement curves of Si and GaN thin films performed with a Berkovich diamond indenter tip were explained by the observed microstructure features obtained from XTEM analyses. According to the observations of micro-Raman and XTEM, the nanoindentation-induced mechanical deformation is due primarily to the generation and propagation of dislocations gliding along the pyramidal and basal planes specific to the hexagonal structure of GaN thin films rather than by indentation-induced phase transformations displayed in Si
    corecore