580 research outputs found

    Launch vehicle trajectory optimization computer program, phase 4 Final technical report

    Get PDF
    Computer program for retrieving stored data and determining variations in launch vehicle performance as function of mission and vehicle parameter

    Launch vehicle trajectory optimization computer program, phase 4 Summary report

    Get PDF
    Computer program for launch vehicle trajectory optimizatio

    The Special Needs of Women on College Campuses

    Get PDF
    The authors embarked on a journey to understand the special needs of women college students. They discovered two major themes that were explored in greater depth in an attempt to explain why these themes were more specific to college women than other populations. Although these needs may be extrapolated to other populations of college students they were of particular concern to the female college student population. The authors began by selecting a non-scientific restricted pool of female college students than spanned first-year, second-year and junior or third-year students. This student sample was interviewed to discover their concerns or perceptions about violence and sexual discrimination against women on college campuses. The interview questions and responses were abbreviated and included, followed by a discussion of each theme. The interview subjects stated that violence was not a major concern however; they did offer suggestions to improve safety. This led the authors to conclude that although they did not explicitly state violence as a concern it remains an implicit concern. The second theme explored was discrimination based on gender. The interviewed sample had a varied response to having been the victim of gender discrimination. Of greater concern was the perception of what constituted gender harassment, what procedures and processes were in place and available to respond to these occurrences and how to report an incident

    Launch Vehicle Production and Operations Cost Metrics

    Get PDF
    Traditionally, launch vehicle cost has been evaluated based on $/Kg to orbit. This metric is calculated based on assumptions not typically met by a specific mission. These assumptions include the specified orbit whether Low Earth Orbit (LEO), Geostationary Earth Orbit (GEO), or both. The metric also assumes the payload utilizes the full lift mass of the launch vehicle, which is rarely true even with secondary payloads.1,2,3 Other approaches for cost metrics have been evaluated including unit cost of the launch vehicle and an approach to consider the full program production and operations costs.4 Unit cost considers the variable cost of the vehicle and the definition of variable costs are discussed. The full program production and operation costs include both the variable costs and the manufacturing base. This metric also distinguishes operations costs from production costs, including pre-flight operational testing. Operations costs also consider the costs of flight operations, including control center operation and maintenance. Each of these 3 cost metrics show different sensitivities to various aspects of launch vehicle cost drivers. The comparison of these metrics provides the strengths and weaknesses of each yielding an assessment useful for cost metric selection for launch vehicle programs

    Energy decay and frequency shift of a superconducting qubit from non-equilibrium quasiparticles

    Full text link
    Quasiparticles are an important decoherence mechanism in superconducting qubits, and can be described with a complex admittance that is a generalization of the Mattis-Bardeen theory. By injecting non-equilibrium quasiparticles with a tunnel junction, we verify qualitatively the expected change of the decay rate and frequency in a phase qubit. With their relative change in agreement to within 4% of prediction, the theory can be reliably used to infer quasiparticle density. We describe how settling of the decay rate may allow determination of whether qubit energy relaxation is limited by non-equilibrium quasiparticles.Comment: Main paper: 4 pages, 3 figures, 1 table. Supplementary material: 8 pages, 3 figure

    Deterministic entanglement of photons in two superconducting microwave resonators

    Full text link
    Quantum entanglement, one of the defining features of quantum mechanics, has been demonstrated in a variety of nonlinear spin-like systems. Quantum entanglement in linear systems has proven significantly more challenging, as the intrinsic energy level degeneracy associated with linearity makes quantum control more difficult. Here we demonstrate the quantum entanglement of photon states in two independent linear microwave resonators, creating N-photon NOON states as a benchmark demonstration. We use a superconducting quantum circuit that includes Josephson qubits to control and measure the two resonators, and we completely characterize the entangled states with bipartite Wigner tomography. These results demonstrate a significant advance in the quantum control of linear resonators in superconducting circuits.Comment: 11 pages, 11 figures, and 3 tables including supplementary materia

    Reduced phase error through optimized control of a superconducting qubit

    Full text link
    Minimizing phase and other errors in experimental quantum gates allows higher fidelity quantum processing. To quantify and correct for phase errors in particular, we have developed a new experimental metrology --- amplified phase error (APE) pulses --- that amplifies and helps identify phase errors in general multi-level qubit architectures. In order to correct for both phase and amplitude errors specific to virtual transitions and leakage outside of the qubit manifold, we implement "half derivative" an experimental simplification of derivative reduction by adiabatic gate (DRAG) control theory. The phase errors are lowered by about a factor of five using this method to 1.6\sim 1.6^{\circ} per gate, and can be tuned to zero. Leakage outside the qubit manifold, to the qubit 2|2\rangle state, is also reduced to 104\sim 10^{-4} for 20%20\% faster gates.Comment: 4 pages, 4 figures with 2 page supplementa

    Improving the Coherence Time of Superconducting Coplanar Resonators

    Full text link
    The quality factor and energy decay time of superconducting resonators have been measured as a function of material, geometry, and magnetic field. Once the dissipation of trapped magnetic vortices is minimized, we identify surface two-level states (TLS) as an important decay mechanism. A wide gap between the center conductor and the ground plane, as well as use of the superconductor Re instead of Al, are shown to decrease loss. We also demonstrate that classical measurements of resonator quality factor at low excitation power are consistent with single-photon decay time measured using qubit-resonator swap experiments.Comment: 3 pages, 4 figures for the main paper; total 5 pages, 6 figures including supplementary material. Submitted to Applied Physics Letter

    Efficient Algorithms for Universal Quantum Simulation

    Full text link
    A universal quantum simulator would enable efficient simulation of quantum dynamics by implementing quantum-simulation algorithms on a quantum computer. Specifically the quantum simulator would efficiently generate qubit-string states that closely approximate physical states obtained from a broad class of dynamical evolutions. I provide an overview of theoretical research into universal quantum simulators and the strategies for minimizing computational space and time costs. Applications to simulating many-body quantum simulation and solving linear equations are discussed
    corecore