580 research outputs found
Launch vehicle trajectory optimization computer program, phase 4 Final technical report
Computer program for retrieving stored data and determining variations in launch vehicle performance as function of mission and vehicle parameter
Launch vehicle trajectory optimization computer program, phase 4 Summary report
Computer program for launch vehicle trajectory optimizatio
The Special Needs of Women on College Campuses
The authors embarked on a journey to understand the special needs of women college students. They discovered two major themes that were explored in greater depth in an attempt to explain why these themes were more specific to college women than other populations. Although these needs may be extrapolated to other populations of college students they were of particular concern to the female college student population. The authors began by selecting a non-scientific restricted pool of female college students than spanned first-year, second-year and junior or third-year students. This student sample was interviewed to discover their concerns or perceptions about violence and sexual discrimination against women on college campuses. The interview questions and responses were abbreviated and included, followed by a discussion of each theme.
The interview subjects stated that violence was not a major concern however; they did offer suggestions to improve safety. This led the authors to conclude that although they did not explicitly state violence as a concern it remains an implicit concern. The second theme explored was discrimination based on gender. The interviewed sample had a varied response to having been the victim of gender discrimination. Of greater concern was the perception of what constituted gender harassment, what procedures and processes were in place and available to respond to these occurrences and how to report an incident
Launch Vehicle Production and Operations Cost Metrics
Traditionally, launch vehicle cost has been evaluated based on $/Kg to orbit. This metric is calculated based on assumptions not typically met by a specific mission. These assumptions include the specified orbit whether Low Earth Orbit (LEO), Geostationary Earth Orbit (GEO), or both. The metric also assumes the payload utilizes the full lift mass of the launch vehicle, which is rarely true even with secondary payloads.1,2,3 Other approaches for cost metrics have been evaluated including unit cost of the launch vehicle and an approach to consider the full program production and operations costs.4 Unit cost considers the variable cost of the vehicle and the definition of variable costs are discussed. The full program production and operation costs include both the variable costs and the manufacturing base. This metric also distinguishes operations costs from production costs, including pre-flight operational testing. Operations costs also consider the costs of flight operations, including control center operation and maintenance. Each of these 3 cost metrics show different sensitivities to various aspects of launch vehicle cost drivers. The comparison of these metrics provides the strengths and weaknesses of each yielding an assessment useful for cost metric selection for launch vehicle programs
Energy decay and frequency shift of a superconducting qubit from non-equilibrium quasiparticles
Quasiparticles are an important decoherence mechanism in superconducting
qubits, and can be described with a complex admittance that is a generalization
of the Mattis-Bardeen theory. By injecting non-equilibrium quasiparticles with
a tunnel junction, we verify qualitatively the expected change of the decay
rate and frequency in a phase qubit. With their relative change in agreement to
within 4% of prediction, the theory can be reliably used to infer quasiparticle
density. We describe how settling of the decay rate may allow determination of
whether qubit energy relaxation is limited by non-equilibrium quasiparticles.Comment: Main paper: 4 pages, 3 figures, 1 table. Supplementary material: 8
pages, 3 figure
Deterministic entanglement of photons in two superconducting microwave resonators
Quantum entanglement, one of the defining features of quantum mechanics, has
been demonstrated in a variety of nonlinear spin-like systems. Quantum
entanglement in linear systems has proven significantly more challenging, as
the intrinsic energy level degeneracy associated with linearity makes quantum
control more difficult. Here we demonstrate the quantum entanglement of photon
states in two independent linear microwave resonators, creating N-photon NOON
states as a benchmark demonstration. We use a superconducting quantum circuit
that includes Josephson qubits to control and measure the two resonators, and
we completely characterize the entangled states with bipartite Wigner
tomography. These results demonstrate a significant advance in the quantum
control of linear resonators in superconducting circuits.Comment: 11 pages, 11 figures, and 3 tables including supplementary materia
Reduced phase error through optimized control of a superconducting qubit
Minimizing phase and other errors in experimental quantum gates allows higher
fidelity quantum processing. To quantify and correct for phase errors in
particular, we have developed a new experimental metrology --- amplified phase
error (APE) pulses --- that amplifies and helps identify phase errors in
general multi-level qubit architectures. In order to correct for both phase and
amplitude errors specific to virtual transitions and leakage outside of the
qubit manifold, we implement "half derivative" an experimental simplification
of derivative reduction by adiabatic gate (DRAG) control theory. The phase
errors are lowered by about a factor of five using this method to per gate, and can be tuned to zero. Leakage outside the qubit
manifold, to the qubit state, is also reduced to for
faster gates.Comment: 4 pages, 4 figures with 2 page supplementa
Improving the Coherence Time of Superconducting Coplanar Resonators
The quality factor and energy decay time of superconducting resonators have
been measured as a function of material, geometry, and magnetic field. Once the
dissipation of trapped magnetic vortices is minimized, we identify surface
two-level states (TLS) as an important decay mechanism. A wide gap between the
center conductor and the ground plane, as well as use of the superconductor Re
instead of Al, are shown to decrease loss. We also demonstrate that classical
measurements of resonator quality factor at low excitation power are consistent
with single-photon decay time measured using qubit-resonator swap experiments.Comment: 3 pages, 4 figures for the main paper; total 5 pages, 6 figures
including supplementary material. Submitted to Applied Physics Letter
Efficient Algorithms for Universal Quantum Simulation
A universal quantum simulator would enable efficient simulation of quantum
dynamics by implementing quantum-simulation algorithms on a quantum computer.
Specifically the quantum simulator would efficiently generate qubit-string
states that closely approximate physical states obtained from a broad class of
dynamical evolutions. I provide an overview of theoretical research into
universal quantum simulators and the strategies for minimizing computational
space and time costs. Applications to simulating many-body quantum simulation
and solving linear equations are discussed
- …
