333 research outputs found

    Efficient Hardware Design Of Iterative Stencil Loops

    Get PDF
    A large number of algorithms for multidimensional signals processing and scientific computation come in the form of iterative stencil loops (ISLs), whose data dependencies span across multiple iterations. Because of their complex inner structure, automatic hardware acceleration of such algorithms is traditionally considered as a difficult task. In this paper, we introduce an automatic design flow that identifies, in a wide family of bidimensional data processing algorithms, sub-portions that exhibit a kind of parallelism close to that of ISLs; these are mapped onto a space of highly optimized ad-hoc architectures, which is efficiently explored to identify the best implementations with respect to both area and throughput. Experimental results show that the proposed methodology generates circuits whose performance is comparable to that of manually-optimized solutions, and orders of magnitude higher than those generated by commercial HLS tools

    Synthesis and matrix properties of α-cyano-5-phenyl-2,4-pentadienic acid (CPPA) for intact proteins analysis by matrix-assisted laser desorption/ionization mass spectrometry

    Get PDF
    The effectiveness of a synthesized matrix, α-cyano-5-phenyl-2,4-pentadienic acid (CPPA), for protein analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in complex samples such as foodstuff and bacterial extracts, is demonstrated. Ultraviolet (UV) absorption along with laser desorption/ionization mass spectrometry (LDI-MS) experiments were systematically conducted in positive ion mode under standard Nd:YLF laser excitation with the aim of characterizing the matrix in terms of wavelength absorption and proton affinity. Besides, the results for standard proteins revealed that CPPA significantly enhanced the protein signals, reduced the spot-to-spot variability and increased the spot homogeneity. The CPPA matrix was successful employed to investigate intact microorganisms, milk and seed extracts for protein profiling. Compared to conventional matrices such as sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA) and 4-chloro-α-cyanocinnamic acid (CClCA), CPPA exhibited better signal-to-noise (S/N) ratios and a uniform response for most examined proteins occurring in milk, hazelnut and in intact bacterial cells of E. coli. These findings not only provide a reactive proton transfer MALDI matrix with excellent reproducibility and sensitivity, but also contribute to extending the battery of useful matrices for intact protein analysis

    Deep control of linear oligomerization of glycerol using lanthanum catalyst on mesoporous silica gel

    Get PDF
    The valorization of glycerol (1), a waste of biodiesel production of Fatty Acid Methyl Esters (FAMEs), adopting a “green” approach, represents an important goal of sustainable chemistry. While the polymerization of 1 to hyperbranched oligomers is a well-established process, the linear analogues are difficult to obtain. In this context, we explore the reaction without the solvent of heterogeneous hybrid La(III)O-KIT-6 catalyst (2), which is based on lanthanum oxide on mesoporous silica gel, showing a superior linear selectivity compared to most of the analogous catalysts recently reported
    • …
    corecore