8,560 research outputs found
Ianus: an Adpative FPGA Computer
Dedicated machines designed for specific computational algorithms can
outperform conventional computers by several orders of magnitude. In this note
we describe {\it Ianus}, a new generation FPGA based machine and its basic
features: hardware integration and wide reprogrammability. Our goal is to build
a machine that can fully exploit the performance potential of new generation
FPGA devices. We also plan a software platform which simplifies its
programming, in order to extend its intended range of application to a wide
class of interesting and computationally demanding problems. The decision to
develop a dedicated processor is a complex one, involving careful assessment of
its performance lead, during its expected lifetime, over traditional computers,
taking into account their performance increase, as predicted by Moore's law. We
discuss this point in detail
The three dimensional Ising spin glass in an external magnetic field: the role of the silent majority
We perform equilibrium parallel-tempering simulations of the 3D Ising
Edwards-Anderson spin glass in a field. A traditional analysis shows no signs
of a phase transition. Yet, we encounter dramatic fluctuations in the behaviour
of the model: Averages over all the data only describe the behaviour of a small
fraction of it. Therefore we develop a new approach to study the equilibrium
behaviour of the system, by classifying the measurements as a function of a
conditioning variate. We propose a finite-size scaling analysis based on the
probability distribution function of the conditioning variate, which may
accelerate the convergence to the thermodynamic limit. In this way, we find a
non-trivial spectrum of behaviours, where a part of the measurements behaves as
the average, while the majority of them shows signs of scale invariance. As a
result, we can estimate the temperature interval where the phase transition in
a field ought to lie, if it exists. Although this would-be critical regime is
unreachable with present resources, the numerical challenge is finally well
posed.Comment: 42 pages, 19 figures. Minor changes and added figure (results
unchanged
Thermodynamic glass transition in a spin glass without time-reversal symmetry
Spin glasses are a longstanding model for the sluggish dynamics that appears
at the glass transition. However, spin glasses differ from structural glasses
for a crucial feature: they enjoy a time reversal symmetry. This symmetry can
be broken by applying an external magnetic field, but embarrassingly little is
known about the critical behaviour of a spin glass in a field. In this context,
the space dimension is crucial. Simulations are easier to interpret in a large
number of dimensions, but one must work below the upper critical dimension
(i.e., in d<6) in order for results to have relevance for experiments. Here we
show conclusive evidence for the presence of a phase transition in a
four-dimensional spin glass in a field. Two ingredients were crucial for this
achievement: massive numerical simulations were carried out on the Janus
special-purpose computer, and a new and powerful finite-size scaling method.Comment: 10 pages, 6 figure
Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats
Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses
'It is like a tomato stall where someone can pick what he likes': structure and practices of female sex work in Kampala, Uganda.
BACKGROUND: Effective interventions among female sex workers require a thorough knowledge of the context of local sex industries. We explore the organisation of female sex work in a low socio-economic setting in Kampala, Uganda. METHODS: We conducted a qualitative study with 101 participants selected from an epidemiological cohort of 1027 women at high risk of HIV in Kampala. Repeat in-depth life history and work practice interviews were conducted from March 2010 to June 2011. Context specific factors of female sex workers' day-to-day lives were captured. Reported themes were identified and categorised inductively. RESULTS: Of the 101 women, 58 were active self-identified sex workers operating in different locations within the area of study and nine had quit sex work. This paper focuses on these 67 women who gave information about their involvement in sex work. The majority had not gone beyond primary level of education and all had at least one child. Thirty one voluntarily disclosed that they were HIV-positive. Common sex work locations were streets/roadsides, bars and night clubs. Typically sex occurred in lodges near bars/night clubs, dark alleyways or car parking lots. Overall, women experienced sex work-related challenges at their work locations but these were more apparent in outdoor settings. These settings exposed women to violence, visibility to police, a stigmatising public as well as competition for clients, while bars provided some protection from these challenges. Older sex workers tended to prefer bars while the younger ones were mostly based on the streets. Alcohol consumption was a feature in all locations and women said it gave them courage and helped them to withstand the night chill. Condom use was determined by clients' willingness, a woman's level of sobriety or price offered. CONCLUSIONS: Sex work operates across a variety of locations in the study area in Kampala, with each presenting different strategies and challenges for those operating there. Risky practices are present in all locations although they are higher on the streets compared to other locations. Location specific interventions are required to address the complex challenges in sex work environments
Differential Regularization of Topologically Massive Yang-Mills Theory and Chern-Simons Theory
We apply differential renormalization method to the study of
three-dimensional topologically massive Yang-Mills and Chern-Simons theories.
The method is especially suitable for such theories as it avoids the need for
dimensional continuation of three-dimensional antisymmetric tensor and the
Feynman rules for three-dimensional theories in coordinate space are relatively
simple. The calculus involved is still lengthy but not as difficult as other
existing methods of calculation. We compute one-loop propagators and vertices
and derive the one-loop local effective action for topologically massive
Yang-Mills theory. We then consider Chern-Simons field theory as the large mass
limit of topologically massive Yang-Mills theory and show that this leads to
the famous shift in the parameter . Some useful formulas for the calculus of
differential renormalization of three-dimensional field theories are given in
an Appendix.Comment: 25 pages, 4 figures. Several typewritten errors and inappropriate
arguments are corrected, especially the correct adresses of authors are give
Nature of the spin-glass phase at experimental length scales
We present a massive equilibrium simulation of the three-dimensional Ising
spin glass at low temperatures. The Janus special-purpose computer has allowed
us to equilibrate, using parallel tempering, L=32 lattices down to T=0.64 Tc.
We demonstrate the relevance of equilibrium finite-size simulations to
understand experimental non-equilibrium spin glasses in the thermodynamical
limit by establishing a time-length dictionary. We conclude that
non-equilibrium experiments performed on a time scale of one hour can be
matched with equilibrium results on L=110 lattices. A detailed investigation of
the probability distribution functions of the spin and link overlap, as well as
of their correlation functions, shows that Replica Symmetry Breaking is the
appropriate theoretical framework for the physically relevant length scales.
Besides, we improve over existing methodologies to ensure equilibration in
parallel tempering simulations.Comment: 48 pages, 19 postscript figures, 9 tables. Version accepted for
publication in the Journal of Statistical Mechanic
Altered Bone Mechanics, Architecture and Composition in the Skeleton of TIMP-3-Deficient Mice
Intracellular interferons in fish : a unique means to combat viral infection
Peer reviewedPublisher PD
- …
