174 research outputs found

    Resource allocation by the marine cyanobacterium Synechococcus WH8102 in response to different nutrient supply ratios

    Get PDF
    Differences in relative availability of nitrate vs. phosphate may contribute to regional variations in plankton elemental stoichiometry. As a representative of the globally abundant marine Synechococcus, strain WH8102 was grown in 16 chemostats up to 52  d at a fixed growth rate with nitrogen–phosphorus ratios (N : Psupply) of 1–50. Initially, the phosphate and nitrate concentrations in the vessel decreased when the respective nutrient was limiting. Cell growth generally stabilized, although several chemostats had apparent oscillations in biomass. We observed extensive plasticity in the elemental content and ratios. N : Pcell matched the supply values between N : Psupply 5 and 20. The C : Pcell followed a similar trend. In contrast, the mean C : Ncell was 6.8 and did not vary as a function of supply ratios. We also observed that induction of alkaline phosphatase, the fraction of P allocated to nucleic acids, and the lipid sulfoquinovosyldiacylglycerol : phosphatidyglycerol ratio inversely correlated with P availability. Our results suggest that this extensive plasticity in the elemental content and ratios depends both on the external nutrient availability as well as past growth history. Thus, our study provides a quantitative understanding of the regulation of the elemental stoichiometry of an abundant ocean phytoplankton lineage

    Deciphering Natural Killer Cell Cytotoxicity Against Medulloblastoma in vitro and in vivo: Implications for Immunotherapy

    Get PDF
    Melanie Gauthier,1,2 Julien Pierson,3 David Moulin,1 Manon Mouginot,1 Valerie Bourguignon,1 Wassim Rhalloussi,1 Jean-Baptiste Vincourt,1 Dominique Dumas,1 Danièle Bensoussan,1,2 Pascal Chastagner,1,4 Cédric Boura,3 Veronique Decot1,2 1CNRS UMR 7365 IMoPA, Université de Lorraine, Nancy, France; 2Cell Therapy and Tissue Bank Unit, Nancy University Hospital, Vandoeuvre-Les-Nancy, France; 3CNRS UMR7039 CRAN, Université de Lorraine, Nancy, France; 4Pediatric Oncology Department, Nancy University Hospital, Vandoeuvre-Les-Nancy, FranceCorrespondence: Veronique Decot, CNRS UMR 7365, IMoPA, Campus Brabois Santé, 9 av de la foret de Haye, Vandoeuvre-Les-Nancy, 54000, France, Tel +0033 – 649574720, Email [email protected]: Medulloblastoma (MB) is the most prevalent paediatric brain tumour. Despite improvements in patient survival with current treatment strategies, the quality of life of these patients remains poor owing to the sequelae and relapse risk. An alternative, or, in addition to the current standard treatment, could be considered immunotherapy, such as Natural Killer cells (NK). NK cells are cytotoxic innate lymphoid cells that play a major role in cancer immunosurveillance. To date, the mechanism of cytotoxicity of NK cells, especially regarding the steps of adhesion, conjugation, cytotoxic granule polarisation in the cell contact area, perforin and granzyme release in two and three dimensions, and therapeutic efficacy in vivo have not been precisely described.Materials and Methods: Each step of NK cytotoxicity against the three MB cell lines was explored using confocal microscopy for conjugation, Elispot for degranulation, flow cytometry, and luminescence assays for target cell necrosis and lysis and mediators released by cytokine array, and then confirmed in a 3D spheroid model. Medulloblastoma-xenografted mice were treated with NK cells. Their persistence was evaluated by flow cytometry, and their efficacy in tumour growth and survival was determined. In addition, their effects on the tumour transcriptome were evaluated.Results: NK cells showed variable affinities for conjugation with MB target cells depending on their subgroup and cytokine activation. Chemokines secreted during NK and MB cell co-culture are mainly associated with angiogenesis and immune cell recruitment. NK cell cytotoxicity induces MB cell death in both 2D and 3D co-culture models. NK cells initiated an inflammatory response in a human MB murine model by modulating the MB cell transcriptome.Conclusion: Our study confirmed that NK cells possess both in vitro and in vivo cytotoxic activity against MB cells and are of interest for the development of immunotherapy.Keywords: cancer, medulloblastoma, immune cells, adoptive transfe

    A large impact crater beneath Hiawatha Glacier in northwest Greenland.

    Get PDF
    We report the discovery of a large impact crater beneath Hiawatha Glacier in northwest Greenland. From airborne radar surveys, we identify a 31-kilometer-wide, circular bedrock depression beneath up to a kilometer of ice. This depression has an elevated rim that cross-cuts tributary subglacial channels and a subdued central uplift that appears to be actively eroding. From ground investigations of the deglaciated foreland, we identify overprinted structures within Precambrian bedrock along the ice margin that strike tangent to the subglacial rim. Glaciofluvial sediment from the largest river draining the crater contains shocked quartz and other impact-related grains. Geochemical analysis of this sediment indicates that the impactor was a fractionated iron asteroid, which must have been more than a kilometer wide to produce the identified crater. Radiostratigraphy of the ice in the crater shows that the Holocene ice is continuous and conformable, but all deeper and older ice appears to be debris rich or heavily disturbed. The age of this impact crater is presently unknown, but from our geological and geophysical evidence, we conclude that it is unlikely to predate the Pleistocene inception of the Greenland Ice Sheet

    Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

    Get PDF
    We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data-coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10%. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets

    Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

    Get PDF
    We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60 S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved datacoverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72m lower and the area of ice sheet grounded on bed below sea level is increased by 10 %. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets

    Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1038/nature20136The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Understanding this recent retreat requires a detailed knowledge of grounding-line history, but the locations of the grounding line before the advent of satellite monitoring in the 1990s are poorly dated. In particular, a history of grounding-line retreat is required to understand the relative roles of contemporaneous ocean-forced change and of ongoing glacier response to an earlier perturbation in driving ice-sheet loss. Here we show that the present thinning and retreat of Pine Island Glacier in West Antarctica is part of a climatically forced trend that was triggered in the 1940s. Our conclusions arise from analysis of sediment cores recovered beneath the floating Pine Island Glacier ice shelf, and constrain the date at which the grounding line retreated from a prominent seafloor ridge. We find that incursion of marine water beyond the crest of this ridge, forming an ocean cavity beneath the ice shelf, occurred in 1945 (±12 years); final ungrounding of the ice shelf from the ridge occurred in 1970 (±4 years). The initial opening of this ocean cavity followed a period of strong warming of West Antarctica, associated with El Niño activity. Furthermore our results suggest that, even when climate forcing weakened, ice-sheet retreat continued.USDO

    A Computational Mechanism for Unified Gain and Timing Control in the Cerebellum

    Get PDF
    Precise gain and timing control is the goal of cerebellar motor learning. Because the basic neural circuitry of the cerebellum is homogeneous throughout the cerebellar cortex, a single computational mechanism may be used for simultaneous gain and timing control. Although many computational models of the cerebellum have been proposed for either gain or timing control, few models have aimed to unify them. In this paper, we hypothesize that gain and timing control can be unified by learning of the complete waveform of the desired movement profile instructed by climbing fiber signals. To justify our hypothesis, we adopted a large-scale spiking network model of the cerebellum, which was originally developed for cerebellar timing mechanisms to explain the experimental data of Pavlovian delay eyeblink conditioning, to the gain adaptation of optokinetic response (OKR) eye movements. By conducting large-scale computer simulations, we could reproduce some features of OKR adaptation, such as the learning-related change of simple spike firing of model Purkinje cells and vestibular nuclear neurons, simulated gain increase, and frequency-dependent gain increase. These results suggest that the cerebellum may use a single computational mechanism to control gain and timing simultaneously

    Rebound Discharge in Deep Cerebellar Nuclear Neurons In Vitro

    Get PDF
    Neurons of the deep cerebellar nuclei (DCN) play a critical role in defining the output of cerebellum in the course of encoding Purkinje cell inhibitory inputs. The earliest work performed with in vitro preparations established that DCN cells have the capacity to translate membrane hyperpolarizations into a rebound increase in firing frequency. The primary means of distinguishing between DCN neurons has been according to cell size and transmitter phenotype, but in some cases, differences in the firing properties of DCN cells maintained in vitro have been reported. In particular, it was shown that large diameter cells in the rat DCN exhibit two phenotypes of rebound discharge in vitro that may eventually help define their functional roles in cerebellar output. A transient burst and weak burst phenotype can be distinguished based on the frequency and pattern of rebound discharge immediately following a hyperpolarizing stimulus. Work to date indicates that the difference in excitability arises from at least the degree of activation of T-type Ca2+ current during the immediate phase of rebound firing and Ca2+-dependent K+ channels that underlie afterhyperpolarizations. Both phenotypes can be detected following stimulation of Purkinje cell inhibitory inputs under conditions that preserve resting membrane potential and natural ionic gradients. In this paper, we review the evidence supporting the existence of different rebound phenotypes in DCN cells and the ion channel expression patterns that underlie their generation
    corecore