100 research outputs found

    How to locate services optimizing redundancy: A comparative analysis of K-Covering Facility Location models

    Get PDF
    Redundancy aspects related to covering facility location problems are of extreme importance for many applications, in particular those regarding critical services. For example, in the healthcare sector, facilities such as ambulances or first-aid centers must be located robustly against unpredictable events causing disruption or congestion. In this paper, we propose different modeling tools that explicitly address coverage redundancy for the underlying service. We also evaluate, both theoretically and experimentally, the properties and behavior of the models, and compare them from a computational and managerial point of view. More precisely, by starting from three classical double-covering models from the literature (BACOP1, BACOP2, and DSM), we define three parametric families of models (namely, K-BACOP1, K-BACOP2, and K-DSM) which generalize the former to any possible Kth coverage level of interest. The study of such generalizations allows us to derive interesting managerial insights on location decisions at the strategic level. The CPU performance and the quality of the solutions returned are assessed through ad-hoc KPIs collected over many representative instances with different sizes and topological characteristics, and also by dynamically simulating scenarios involving possible disruption for the located facilities. Finally, a real case study concerning ambulance service in Morocco is analyzed. The results show that, in general, K-BACOP1 performs very well, even if intrinsic feasibility issues limit its broad applicability. Instead, K-DSM achieves the best coverage and equity performances for lower levels of redundancy, while K-BACOP2 seems the most robust choice when high redundancy is required, showing smoother and more predictable trends

    The multi-stage dynamic stochastic decision process with unknown distribution of the random utilities

    Get PDF
    We consider a decision maker who performs a stochastic decision process over a multiple number of stages, where the choice alternatives are characterized by random utilities with unknown probability distribution. The decisions are nested each other, i.e. the decision taken at each stage is affected by the subsequent stage decisions. The problem consists in maximizing the total expected utility of the overall multi-stage stochastic dynamic decision process. By means of some results of the extreme values theory, the probability distribution of the total maximum utility is derived and its expected value is found. This value is proportional to the logarithm of the accessibility of the decision maker to the overall set of alternatives in the different stages at the start of the decision process. It is also shown that the choice probability to select alternatives becomes a Nested Multinomial Logit model

    The synchronized multi-commodity multi-service Transshipment-Hub Location Problem with cyclic schedules

    Get PDF
    The synchronized multi-commodity multi-service Transshipment-Hub Location Problem is a hub location problem variant faced by a logistics service provider operating in the context of synchromodal logistics. The provider must decide where and when to locate transshipment facilities in order to manage many customers’ origin–destination shipments with release and due dates while minimizing a total cost given by location costs, transportation costs, and penalties related to unmet time constraints. The considered synchromodal network involves different transportation modes (e.g., truck, rail, river and sea navigation) to perform long-haul shipments and the freight synchronization at facilities for transshipment operations. To the best of our knowledge, this variant has never been studied before. Considering a time horizon in which both transportation services and demand follow a cyclic pattern, we propose a time–space network representation of the problem and an ad-hoc embedding of the time-dependent parameters into the network topology and the arcs’ weight. This allows to model the flow synchronization required by the problem through a Mixed-Integer Linear Programming formulation with a simplified structure, similar to well-known hub location problems and avoiding complicating constraints for managing the time dimension. Through an extensive experimental campaign conducted over a large set of realistic instances, we present a computational and an economic analysis. In particular, we want to assess the potential benefits of implementing synchromodal logistics operations into long-haul supply-chains managed by large service providers. Since flexibility is one of the main features of synchromodality, we evaluate the impact on decisions and costs of different levels of flexibility regarding terminals’ operations and customers’ requirements

    Endocannabinoids and cardiovascular prevention: real progress?

    Get PDF
    The prevalence of obesity continues to increase and represents one of the principal causes of cardiovascular morbidity and mortality. After the discovery of a specific receptor of the psychoactive principle of marijuana, the cannabinoid receptors and their endogenous ligands, several studies have demonstrated the role of this system in the control of food intake and energy balance and its overactivity in obesity. Recent studies with the CB1 receptor antagonist rimonabant have demonstrated favorable effects such as a reduction in body weight and waist circumference and an improvement in metabolic factors (cholesterol, triglycerides, glycemia etc). Therefore, the antagonism of the endocannabinoid (EC) system, if recent data can be confirmed, could be a new treatment target for high risk overweight or obese patients. Obesity is a growing problem that has epidemic proportions worldwide and is associated with an increased risk of premature death (1–3). Individuals with a central deposition of fats have elevated cardiovascular morbidity and mortality (including stroke, heart failure and myocardial infarction) and, because of a growing prevalence not only in adults but also in adolescents, it was reclassified in AHA guidelines as a “major modifiable risk factor” for coronary heart disease (4, 5). Although first choice therapy in obesity is based on correcting lifestyle (diet and physical activity) in patients with abdominal obesity and high cardiovascular risk and diabetes, often it is necessary to use drugs which reduce the risks. The EC system represents a new target for weight control and the improvement of lipid and glycemic metabolism (6, 7)

    Defining Kawasaki disease and pediatric inflammatory multisystem syndrome-temporally associated to SARS-CoV-2 infection during SARS-CoV-2 epidemic in Italy: results from a national, multicenter survey

    Get PDF
    Background: There is mounting evidence on the existence of a Pediatric Inflammatory Multisystem Syndrome-temporally associated to SARS-CoV-2 infection (PIMS-TS), sharing similarities with Kawasaki Disease (KD). The main outcome of the study were to better characterize the clinical features and the treatment response of PIMS-TS and to explore its relationship with KD determining whether KD and PIMS are two distinct entities. Methods: The Rheumatology Study Group of the Italian Pediatric Society launched a survey to enroll patients diagnosed with KD (Kawasaki Disease Group - KDG) or KD-like (Kawacovid Group - KCG) disease between February 1st 2020, and May 31st 2020. Demographic, clinical, laboratory data, treatment information, and patients' outcome were collected in an online anonymized database (RedCAPÂź). Relationship between clinical presentation and SARS-CoV-2 infection was also taken into account. Moreover, clinical characteristics of KDG during SARS-CoV-2 epidemic (KDG-CoV2) were compared to Kawasaki Disease patients (KDG-Historical) seen in three different Italian tertiary pediatric hospitals (Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste; AOU Meyer, Florence; IRCCS Istituto Giannina Gaslini, Genoa) from January 1st 2000 to December 31st 2019. Chi square test or exact Fisher test and non-parametric Wilcoxon Mann-Whitney test were used to study differences between two groups. Results: One-hundred-forty-nine cases were enrolled, (96 KDG and 53 KCG). KCG children were significantly older and presented more frequently from gastrointestinal and respiratory involvement. Cardiac involvement was more common in KCG, with 60,4% of patients with myocarditis. 37,8% of patients among KCG presented hypotension/non-cardiogenic shock. Coronary artery abnormalities (CAA) were more common in the KDG. The risk of ICU admission were higher in KCG. Lymphopenia, higher CRP levels, elevated ferritin and troponin-T characterized KCG. KDG received more frequently immunoglobulins (IVIG) and acetylsalicylic acid (ASA) (81,3% vs 66%; p = 0.04 and 71,9% vs 43,4%; p = 0.001 respectively) as KCG more often received glucocorticoids (56,6% vs 14,6%; p < 0.0001). SARS-CoV-2 assay more often resulted positive in KCG than in KDG (75,5% vs 20%; p < 0.0001). Short-term follow data showed minor complications. Comparing KDG with a KD-Historical Italian cohort (598 patients), no statistical difference was found in terms of clinical manifestations and laboratory data. Conclusion: Our study suggests that SARS-CoV-2 infection might determine two distinct inflammatory diseases in children: KD and PIMS-TS. Older age at onset and clinical peculiarities like the occurrence of myocarditis characterize this multi-inflammatory syndrome. Our patients had an optimal response to treatments and a good outcome, with few complications and no deaths

    Smart steaming: A new flexible paradigm for synchromodal logistics

    Get PDF
    Slow steaming, i.e., the possibility to ship vessels at a significantly slower speed than their nominal one, has been widely studied and implemented to improve the sustainability of long-haul supply chains. However, to create an efficient symbiosis with the paradigm of synchromodality, an evolution of slow steaming called smart steaming is introduced. Smart steaming is about defining a medium speed execution of shipping movements and the real-time adjustment (acceleration and deceleration) of traveling speeds to pursue the entire logistic system’s overall efficiency and sustainability. For instance, congestion in handling facilities (intermodal hubs, ports, and rail stations) is often caused by the common wish to arrive as soon as possible. Therefore, smart steaming would help avoid bottlenecks, allowing better synchronization and decreasing waiting time at ports or handling facilities. This work aims to discuss the strict relationships between smart steaming and synchromodality and show the potential impact of moving from slow steaming to smart steaming in terms of sustainability and efficiency. Moreover, we will propose an analysis considering the pros, cons, opportunities, and risks of managing operations under this new policy

    An Effective Matheuristic for the Capacitated Total Quantity Discount Problem

    No full text
    New generation algorithms focus on hybrid miscellaneous of exact and heuristic methods. Combining meta-heuristics and exact methods based on mathematical models appears to be a very promising alternative in solving many combinatorial optimization problems. In this paper we introduce a matheuristic method exploiting the optimal solution of mixed integer subproblems to solve the complex supplier selection problem of a company that needs to select a subset of suppliers so to minimize purchasing costs while satisfying products demand. Suppliers offer products at given prices and apply discounts according to the total quantity purchased. The problem, known as Total Quantity Discount Problem (TQDP), is strongly NP-hard thus motivating the study of effective and efficient heuristic methods. The proposed solution method is strengthened by the introduction of an Integer Linear Programming (ILP) refinement approach. An extensive computational analysis on a set of benchmark instances available in the literature has shown how the method is efficient and extremely effective allowing to improve existing best known solution values

    An exact algorithm for the Capacitated Total Quantity Discount Problem

    No full text
    In this paper we analyze the procurement problem of a company that needs to purchase a number of products from a set of suppliers to satisfy demand. The suppliers offer total quantity discounts and the company aims at selecting a set of suppliers so to satisfy product demand at minimum purchasing cost. The problem, known as Total Quantity Discount Problem (TQDP), is strongly NP-hard. We study different families of valid inequalities and provide a branch-and-cut approach to solve the capacitated variant of the problem (Capacitated TQDP) where the quantity available for a product from a supplier is limited. A hybrid algorithm, called HELP (Heuristic Enhancement from LP), is used to provide an initial feasible solution to the exact approach. HELP exploits information provided by the continuous relaxation problem to construct neighborhoods optimally searched through the solution of mixed integer subproblems. A streamlined version of the proposed exact method can optimally solve in a reasonable amount of time instances with up to 100 suppliers and 500 products, and largely outperforms an existing approach available in the literature and CPLEX 12.2 that frequently runs out of memory before completing the search
    • 

    corecore