500 research outputs found

    Master Integrals for Fermionic Contributions to Massless Three-Loop Form Factors

    Get PDF
    In this letter we continue the calculation of master integrals for massless three-loop form factors by giving analytical results for those integrals which are relevant for the fermionic contributions proportional to N_F^2, N_F*N, and N_F/N. Working in dimensional regularisation, we express one of the integrals in a closed form which is exact to all orders in epsilon, containing Gamma-functions and hypergeometric functions of unit argument. In all other cases we derive multiple Mellin-Barnes representations from which the coefficients of the Laurent expansion in epsilon are extracted in an analytical form. To obtain the finite part of the three-loop quark and gluon form factors, all coefficients through transcendentality six in the Riemann zeta-function have to be included.Comment: 12 pages, 1 figure. References added and updated. Appendix on evaluation of Mellin-Barnes integrals added. Version to appear in PL

    Electron Entanglement via a Quantum Dot

    Get PDF
    This Letter presents a method of electron entanglement generation. The system under consideration is a single-level quantum dot with one input and two output leads. The leads are arranged such that the dot is empty, single electron tunneling is suppressed by energy conservation, and two-electron virtual co-tunneling is allowed. This yields a pure, non-local spin-singlet state at the output leads. Coulomb interaction is the nonlinearity essential for entanglement generation, and, in its absence, the singlet state vanishes. This type of electron entanglement is a four-wave mixing process analogous to the photon entanglement generated by a Chi-3 parametric amplifier.Comment: 4 page

    High multiplicity W+jets predictions at NLO

    Full text link
    In these proceedings we present results from a recent calculation for the production of a W boson in conjunction with five jets at next-to-leading order in perturbative QCD. We also use results at lower multiplicities to extrapolate the cross section to the same process with six jets.Comment: 5 pages, Proceedings for the DIS2013 conferenc

    HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters

    Full text link
    We present the Mathematica package HypExp which allows to expand hypergeometric functions JFJ1_JF_{J-1} around integer parameters to arbitrary order. At this, we apply two methods, the first one being based on an integral representation, the second one on the nested sums approach. The expansion works for both symbolic argument zz and unit argument. We also implemented new classes of integrals that appear in the first method and that are, in part, yet unknown to Mathematica.Comment: 33 pages, latex, 2 figures, the package can be downloaded from http://krone.physik.unizh.ch/~maitreda/HypExp/, minor changes, works now under Window

    Cyclical Quantum Memory for Photonic Qubits

    Get PDF
    We have performed a proof-of-principle experiment in which qubits encoded in the polarization states of single-photons from a parametric down-conversion source were coherently stored and read-out from a quantum memory device. The memory device utilized a simple free-space storage loop, providing a cyclical read-out that could be synchronized with the cycle time of a quantum computer. The coherence of the photonic qubits was maintained during switching operations by using a high-speed polarizing Sagnac interferometer switch.Comment: 4 pages, 5 figure

    Antenna subtraction with hadronic initial states

    Get PDF
    The antenna subtraction method for the computation of higher order corrections to jet observables and exclusive cross sections at collider experiments is extended to include hadronic initial states. In addition to the already known antenna subtraction with both radiators in the final state (final-final antennae), we introduce antenna subtractions with one or two radiators in the initial state (initial-final or initial-initial antennae). For those, we derive the phase space factorization and discuss the allowed phase space mappings at NLO and NNLO. We present integrated forms for all antenna functions relevant to NLO calculations, and describe the construction of the full antenna subtraction terms at NLO on two examples. The extension of the formalism to NNLO is outlined.Comment: 33 pages, 3 figure

    Application of the Principle of Maximum Conformality to Top-Pair Production

    Full text link
    A major contribution to the uncertainty of finite-order perturbative QCD predictions is the perceived ambiguity in setting the renormalization scale μr\mu_r. For example, by using the conventional way of setting μr[mt/2,2mt]\mu_r \in [m_t/2,2m_t], one obtains the total ttˉt \bar{t} production cross-section σttˉ\sigma_{t \bar{t}} with the uncertainty \Delta \sigma_{t \bar{t}}/\sigma_{t \bar{t}}\sim ({}^{+3%}_{-4%}) at the Tevatron and LHC even for the present NNLO level. The Principle of Maximum Conformality (PMC) eliminates the renormalization scale ambiguity in precision tests of Abelian QED and non-Abelian QCD theories. In this paper we apply PMC scale-setting to predict the ttˉt \bar t cross-section σttˉ\sigma_{t\bar{t}} at the Tevatron and LHC colliders. It is found that σttˉ\sigma_{t\bar{t}} remains almost unchanged by varying μrinit\mu^{\rm init}_r within the region of [mt/4,4mt][m_t/4,4m_t]. The convergence of the expansion series is greatly improved. For the (qqˉ)(q\bar{q})-channel, which is dominant at the Tevatron, its NLO PMC scale is much smaller than the top-quark mass in the small xx-region, and thus its NLO cross-section is increased by about a factor of two. In the case of the (gg)(gg)-channel, which is dominant at the LHC, its NLO PMC scale slightly increases with the subprocess collision energy s\sqrt{s}, but it is still smaller than mtm_t for s1\sqrt{s}\lesssim 1 TeV, and the resulting NLO cross-section is increased by 20\sim 20%. As a result, a larger σttˉ\sigma_{t\bar{t}} is obtained in comparison to the conventional scale-setting method, which agrees well with the present Tevatron and LHC data. More explicitly, by setting mt=172.9±1.1m_t=172.9\pm 1.1 GeV, we predict σTevatron,  1.96TeV=7.6260.257+0.265\sigma_{\rm Tevatron,\;1.96\,TeV} = 7.626^{+0.265}_{-0.257} pb, σLHC,  7TeV=171.85.6+5.8\sigma_{\rm LHC,\;7\,TeV} = 171.8^{+5.8}_{-5.6} pb and σLHC,  14TeV=941.326.5+28.4\sigma_{\rm LHC,\;14\,TeV} = 941.3^{+28.4}_{-26.5} pb. [full abstract can be found in the paper.]Comment: 15 pages, 11 figures, 5 tables. Fig.(9) is correcte

    A Dimension-Adaptive Multi-Index Monte Carlo Method Applied to a Model of a Heat Exchanger

    Full text link
    We present an adaptive version of the Multi-Index Monte Carlo method, introduced by Haji-Ali, Nobile and Tempone (2016), for simulating PDEs with coefficients that are random fields. A classical technique for sampling from these random fields is the Karhunen-Lo\`eve expansion. Our adaptive algorithm is based on the adaptive algorithm used in sparse grid cubature as introduced by Gerstner and Griebel (2003), and automatically chooses the number of terms needed in this expansion, as well as the required spatial discretizations of the PDE model. We apply the method to a simplified model of a heat exchanger with random insulator material, where the stochastic characteristics are modeled as a lognormal random field, and we show consistent computational savings

    NNLO phase space master integrals for two-to-one inclusive cross sections in dimensional regularization

    Full text link
    We evaluate all phase space master integrals which are required for the total cross section of generic 2 -> 1 processes at NNLO as a series expansion in the dimensional regulator epsilon. Away from the limit of threshold production, our expansion includes one order higher than what has been available in the literature. At threshold, we provide expressions which are valid to all orders in terms of Gamma functions and hypergeometric functions. These results are a necessary ingredient for the renormalization and mass factorization of singularities in 2 -> 1 inclusive cross sections at NNNLO in QCD.Comment: 37 pages, plus 3 ancillary files containing analytic expressions in Maple forma

    Matching QCD and HQET heavy-light currents at three loops

    Full text link
    We consider the currents formed by a heavy and a light quark within Quantum Chromodynamics and compute the matching to Heavy Quark Effective Theory to three-loop accuracy. As an application we obtain the third-order perturbative corrections to ratios of B-meson decay constants.Comment: 23 pages, full results are available as Mathematica files at http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp09/ttp09-41/ ; v2: an error in comparison with Ref. [8] fixed ; v3: Journal versio
    corecore