300 research outputs found
Bias Dependent 1/f Conductivity Fluctuations in Low-Doped LaCaMnO Manganite Single Crystals
Low frequency noise in current biased LaCaMnO single
crystals has been investigated in a wide temperature range from 79 K to 290 K.
Despite pronounced changes in magnetic properties and dissipation mechanisms of
the sample with changing temperature, the noise spectra were found to be always
of the 1/f type and their intensity (except the lowest temperature studied)
scaled as a square of the bias. At liquid nitrogen temperatures and under bias
exceeding some threshold value, the behavior of the noise deviates from the
quasi-equilibrium modulation noise and starts to depend in a non monotonic way
on bias. It has been verified that the observed noise obeys Dutta and Horn
model of 1/f noise in solids. The appearance of nonequilibrium 1/f noise and
its dependence on bias have been associated with changes in the distribution of
activation energies in the underlying energy landscape. These changes have been
correlated with bias induced changes in the intrinsic tunneling mechanism
dominating dissipation in LaCaMnO at low temperatures.Comment: Accepted for publication in the Journal of Applied Physic
Nonequilibrium 1/f Noise in Low-doped Manganite Single Crystals
1/f noise in current biased La0.82Ca0.18MnO3 crystals has been investigated.
The temperature dependence of the noise follows the resistivity changes with
temperature suggesting that resistivity fluctuations constitute a fixed
fraction of the total resistivity, independently of the dissipation mechanism
and magnetic state of the system. The noise scales as a square of the current
as expected for equilibrium resistivity fluctuations. However, at 77 K at bias
exceeding some threshold, the noise intensity starts to decrease with
increasing bias. The appearance of nonequilibrium noise is interpreted in terms
of bias dependent multi-step indirect tunneling.Comment: 4pages, 3figures,APL accepte
The tumour bank at the children's hospital at westmead: An Australian paediatric cancer biorepository
© 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/. The Tumor Bank at The Children's Hospital at Westmead was established in 1998 with the purpose of facilitating research into childhood malignancy through the active provision of well annotated, ethically collected tissue samples and providing a pathway for the Children Hospital at Westmead to engage in leading research initiatives, supporting international investigations and clinical trials. Within 20 years practice as a single institute biorepository, The Tumour Bank has established standard operating procedures for collection of tissue, blood and bone marrow that were integrated into routine patient management systems. In addition, three main operational areas have been developed: collection of biospecimens and written consent; management of clinical data and biospecimen inventory database; and implementation of an open access policy to support childhood cancer research around the world. Regulatory oversight is provided by the Tumour Bank Committee, Human Research Ethics Committee and Governance Department. This concerted effort has resulted in collecting 20340 specimens from 3788 patients within 20 years, and The Tumour bank has supported over 108 national and international research projects, and contributed to over 70 peer-reviewed publications to date, with a mean time-to-publication of 19.1 ± 9.0 months and average Impact Factor of 6.11 ± 4.53. In conclusion, the Children's Hospital at Westmead Tumour Bank has demonstrated a sustained single institutional biorepository model for facilitating translational research of rare cancer. It has provided strong evidence that integration of a single institutional biobank into standard clinical practices would be the long-term pathway of valuable bio-resource for rare cancer research
Metamaterial Polarization Converter Analysis: Limits of Performance
In this paper we analyze the theoretical limits of a metamaterial converter
that allows for linear-to- elliptical polarization transformation with any
desired ellipticity and ellipse orientation. We employ the transmission line
approach providing a needed level of the design generalization. Our analysis
reveals that the maximal conversion efficiency for transmission through a
single metamaterial layer is 50%, while the realistic re ection configuration
can give the conversion efficiency up to 90%. We show that a double layer
transmission converter and a single layer with a ground plane can have 100%
polarization conversion efficiency. We tested our conclusions numerically
reaching the designated limits of efficiency using a simple metamaterial
design. Our general analysis provides useful guidelines for the metamaterial
polarization converter design for virtually any frequency range of the
electromagnetic waves.Comment: 10 pages, 11 figures, 2 table
Solid 4He and the Supersolid Phase: from Theoretical Speculation to the Discovery of a New State of Matter? A Review of the Past and Present Status of Research
The possibility of a supersolid state of matter, i.e., a crystalline solid
exhibiting superfluid properties, first appeared in theoretical studies about
forty years ago. After a long period of little interest due to the lack of
experimental evidence, it has attracted strong experimental and theoretical
attention in the last few years since Kim and Chan (Penn State, USA) reported
evidence for nonclassical rotational inertia effects, a typical signature of
superfluidity, in samples of solid 4He. Since this "first observation", other
experimental groups have observed such effects in the response to the rotation
of samples of crystalline helium, and it has become clear that the response of
the solid is extremely sensitive to growth conditions, annealing processes, and
3He impurities. A peak in the specific heat in the same range of temperatures
has been reported as well as anomalies in the elastic behaviour of solid 4He
with a strong resemblance to the phenomena revealed by torsional oscillator
experiments. Very recently, the observation of unusual mass transport in hcp
solid 4He has also been reported, suggesting superflow. From the theoretical
point of view, powerful simulation methods have been used to study solid 4He,
but the interpretation of the data is still rather difficult; dealing with the
question of supersolidity means that one has to face not only the problem of
the coexistence of quantum coherence phenomena and crystalline order, exploring
the realm of spontaneous symmetry breaking and quantum field theory, but also
the problem of the role of disorder, i.e., how defects, such as vacancies,
impurities, dislocations, and grain boundaries, participate in the phase
transition mechanism.Comment: Published on J. Phys. Soc. Jpn., Vol.77, No.11, p.11101
Exchange bias effect in alloys and compounds
The phenomenology of exchange bias effects observed in structurally
single-phase alloys and compounds but composed of a variety of coexisting
magnetic phases such as ferromagnetic, antiferromagnetic, ferrimagnetic,
spin-glass, cluster-glass and disordered magnetic states are reviewed. The
investigations on exchange bias effects are discussed in diverse types of
alloys and compounds where qualitative and quantitative aspects of magnetism
are focused based on macroscopic experimental tools such as magnetization and
magnetoresistance measurements. Here, we focus on improvement of fundamental
issues of the exchange bias effects rather than on their technological
importance
Research in progress: report on the ICAIL 2017 doctoral consortium
This paper arose out of the 2017 international conference on AI and law doctoral consortium. There were five students who presented their Ph.D. work, and each of them has contributed a section to this paper. The paper offers a view of what topics are currently engaging students, and shows the diversity of their interests and influences
Synthesis, characterisation and study of magnetocaloric effects (enhanced and reduced) in manganate perovskites
The effect of the A-site dopant ionic radii on the observed magnetocaloric effect (MCE) exhibited by three different families of manganese-based perovskites was investigated using both induction heating and SQUID magnetometry measurements. The doped perovskites La1-xSrxMnO3 (LSMO), La1-xCaxMnO3 (LCMO), and La1-xBaxMnO3 (LBMO) (x = 0.25, 0.35, 0.4) were prepared using a modified peroxide sol-gel synthesis. This method has not been previously used for the synthesis of LCMO or LBMO. Structural characterisation of the agglomerates of magnetic nanoparticles (MNP) for each material was carried out using SEM, XRD and IR spectroscopy. Magnetic heating was observed for materials with larger A-site dopant radii relative to La3+; LSMO40 and LBMO40, with average SARs obtained of 51.5 Wg-1Mn and 33.8 Wg-1Mn respectively. However, reduced magnetic heating effects were observed for smaller A-site dopant radii relative to La3+ (LCMO). In fact, the calculated Specific Absorption Rate for LCMO40 of 14.72 Wg-1Mn is half that of the blank
- âŠ