398 research outputs found

    A search for distant radio galaxies from SUMSS and NVSS: III. radio spectral energy distributions and the z-alpha correlation

    Full text link
    This is the third in a series of papers that present observations and results for a sample of 76 ultra-steep-spectrum radio sources designed to find galaxies at high redshift. Here we present multi-frequency radio observations, from the Australia Telescope Compact Array, for a subset of 37 galaxies from the sample. Matched resolution observations at 2.3, 4.8 and 6.2GHz are presented for all galaxies, with the z<2 galaxies additionally observed at 8.6 and 18GHz. New angular size constraints are reported for 19 sources based on high resolution 4.8 and 6.2GHz observations. Functional forms for the rest-frame spectral energy distributions are derived: 89% of the sample is well characterised by a single power law, whilst the remaining 11% show some flattening toward higher frequencies: not one source shows any evidence for high frequency steepening. We discuss the implications of this result in light of the empirical correlation between redshift and spectral index seen in flux limited samples of radio galaxies. Finally, a new physical mechanism to explain the redshift -- spectral index correlation is posited: extremely steep spectrum radio galaxies in the local universe usually reside at the centres of rich galaxy clusters. We argue that if a higher fraction of radio galaxies, as a function of redshift, are located in environments with densities similar to nearby rich clusters, then this could be a natural interpretation for the correlation. We briefly outline our plans to pursue this line of investigation.Comment: MNRAS in pres

    Large Scale Structure traced by Molecular Gas at High Redshift

    Full text link
    We present observations of redshifted CO(1-0) and CO(2-1) in a field containing an overdensity of Lyman break galaxies (LBGs) at z=5.12. Our Australia Telescope Compact Array observations were centered between two spectroscopically-confirmed z=5.12 galaxies. We place upper limits on the molecular gas masses in these two galaxies of M(H_2) <1.7 x 10^10 M_sun and <2.9 x 10^9 M_sun (2 sigma), comparable to their stellar masses. We detect an optically-faint line emitter situated between the two LBGs which we identify as warm molecular gas at z=5.1245 +/- 0.0001. This source, detected in the CO(2-1) transition but undetected in CO(1-0), has an integrated line flux of 0.106 +/- 0.012 Jy km/s, yielding an inferred gas mass M(H_2)=(1.9 +/- 0.2) x 10^10 M_sun. Molecular line emitters without detectable counterparts at optical and infrared wavelengths may be crucial tracers of structure and mass at high redshift.Comment: 4 pages, accepted for publication in ApJ Letter

    The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia : further evidence and meta-analysis

    Get PDF
    NO is a pleiotropic signaling molecule and has an important role in cognition and emotion. In the brain, NO is produced by neuronal nitric oxide synthase (NOS-I, encoded by NOS1) coupled to the NMDA receptor via PDZ. interactions; this protein-protein interaction is disrupted upon binding of NOS1 adapter protein (encoded by NOS1AP) to NOS-I. As both NOS1 and NOS1AP were associated with schizophrenia, we here investigated these genes in greater detail by genotyping new samples and conducting a meta-analysis of our own and published data. In doing so, we confirmed association of both genes with schizophrenia and found evidence for their interaction in increasing risk towards disease. Our strongest finding was the NOS1 promoter SNP rs41279104, yielding an odds ratio of 1.29 in the meta-analysis. As findings from heterologous cell systems have suggested that the risk allele decreases gene expression, we studied the effect of the variant on NOS1 expression in human post-mortem brain samples and found that the risk allele significantly decreases expression of NOS1 in the prefrontal cortex. Bioinformatic analyses suggest that this might be due the replacement of six transcription factor binding sites by two new binding sites as a consequence of proxy SNPs. Taken together, our data argue that genetic variance in NOS1 resulting in lower prefrontal brain expression of this gene contributes to schizophrenia liability, and that NOS1 interacts with NOS1AP in doing so. The NOS1-NOS1AP PDZ interface may thus well constitute a novel target for small molecules in at least some forms of schizophrenia. PostprintPeer reviewe

    CO line emission in the halo of a radio galaxy at z=2.6

    Full text link
    We report the detection of luminous CO(3-2) line emission in the halo of the z=2.6 radio galaxy (HzRG) TXS0828+193, which has no detected counterpart at optical to mid-infrared wavelengths implying a stellar mass < few x10^9 M_sun and relatively low star-formation rates. With the IRAM PdBI we find two CO emission line components at the same position at ~80 kpc distance from the HzRG along the axis of the radio jet, with different blueshifts of few 100 km s^-1 relative to the HzRG and a total luminosity of ~2x10^10 K km s^-1 pc^2 detected at 8 sigma significance. HzRGs have significant galaxy overdensities and extended halos of metal-enriched gas often with embedded clouds or filaments of denser material, and likely trace very massive dark-matter halos. The CO emission may be associated with a gas-rich, low-mass satellite galaxy with little on-going star formation, in contrast to all previous CO detections of galaxies at similar redshifts. Alternatively, the CO may be related to a gas cloud or filament and perhaps jet-induced gas cooling in the outer halo, somewhat in analogy with extended CO emission found in low-redshift galaxy clusters.Comment: MNRAS Letters, accepte

    On the Spectral Index of Distant Radio Galaxies

    Full text link
    The problems of using the spectral index of radio galaxies in various tests, in particular, in selecting distant radio sources are considered. The history of the question of choosing a criterion of searching for distant radio galaxies based on the spectral index is presented. For a new catalog of 2442 radio galaxies constructed from NED, SDSS, and CATS data, an analytical form of the sp ectral index.redshift relation has been determined for the first time. The spectral index.angular size and spectral index.flux density diagrams have also been constructed. Peculiarities of the distribution of sources on these diagrams are discussed.Comment: 7 pages,5 figure

    Multiwavelength characterization of faint ultra steep spectrum radio sources: a search for high-redshift radio galaxies

    Get PDF
    Context. Ultra steep spectrum (USS) radio sources are one of the efficient tracers of powerful high-z radio galaxies (HzRGs). In contrast to searches for powerful HzRGs from radio surveys of moderate depths, fainter USS samples derived from deeper radio surveys can be useful in finding HzRGs at even higher redshifts and in unveiling a population of obscured weaker radio-loud AGN at moderate redshifts. Aims. Using our 325 MHz GMRT observations (5σ ∼ 800 μJy) and 1.4 GHz VLA observations (5σ ∼ 80−100 μJy) available in two subfields (VLA-VIMOS VLT Deep Survey (VLA-VVDS) and Subaru X-ray Deep Field (SXDF)) of the XMM-LSS field, we derive a large sample of 160 faint USS radio sources and characterize their nature. Methods. The optical and IR counterparts of our USS sample sources are searched using existing deep surveys, at respective wavelengths. We attempt to unveil the nature of our faint USS sources using diagnostic techniques based on mid-IR colors, flux ratios of radio to mid-IR, and radio luminosities. Results. Redshift estimates are available for 86/116 (∼74%) USS sources in the VLA-VVDS field and for 39/44 (∼87%) USS sources in the SXDF fields with median values (zmedian) ∼1.18 and ∼1.57, respectively, which are higher than estimates for non-USS radio sources (zmedian non−USS ∼ 0.99 and ∼0.96), in the two subfields. The MIR color–color diagnostic and radio luminosities are consistent with most of our USS sample sources at higher redshifts (z > 0.5) being AGN. The flux ratio of radio to mid-IR (S 1.4 GHz/S 3.6 μm) versus redshift diagnostic plot suggests that more than half of our USS sample sources distributed over z ∼ 0.5 to 3.8 are likely to be hosted in obscured environments. A significant fraction (∼26% in the VLA-VVDS and ∼13% in the SXDF) of our USS sources without redshift estimates mostly remain unidentified in the existing optical, IR surveys, and exhibit high radio to mid-IR flux ratio limits similar to HzRGs, and so, can be considered as potential HzRG candidates. Conclusions. Our study shows that the criterion of ultra steep spectral index remains a reasonably efficient method to select high-z sources even at sub-mJy flux densities. In addition to powerful HzRG candidates, our faint USS sample also contains populations of weaker radio-loud AGNs potentially hosted in obscured environments

    Quasar induced galaxy formation: a new paradigm ?

    Full text link
    We discuss observational evidence that quasars play a key role in the formation of galaxies starting from the detailed study of the quasar HE0450-2958 and extending the discussion to a series of converging evidence that radio jets may trigger galaxy formation. The direct detection with VISIR at the ESO-VLT of the 7 kpc distant companion galaxy of HE0450-2958 allows us to spatially separate the sites of quasar and star formation activity in this composite system made of two ultra-luminous infrared galaxies (ULIRGs). No host galaxy has yet been detected for this quasar, but the companion galaxy stellar mass would bring HE0450-2958 in the local M(BH)-M(stellar bulge) relation if it were to merge with the QSO. This is bound to happen because of their close distance (7 kpc) and small relative velocity (~60-200 km/s). We conclude that we may be witnessing the building of the M(BH)-M(stellar bulge) relation, or at least of a major event in that process. The star formation rate (~340 Msun/yr), age (40-200 Myr) and stellar mass ([5-6]x10^10 Msun) are consistent with jet-induced formation of the companion galaxy. We suggest that HE0450-2958 may be fueled in fresh material by cold gas accretion from intergalactic filaments. We map the projected galaxy density surrounding the QSO as a potential tracer of intergalactic filaments and discuss a putative detection. Comparison to other systems suggests that inside-out formation of quasar host galaxies and jet-induced galaxy formation may be a common process. Two tests are proposed for this new paradigm: (1) the detection of offset molecular gas or dust emission with respect to the position of distant QSOs, (2) the delayed formation of host galaxies as a result of QSO activity, hence the two step building of the M(BH)/M(stellar bulge) ratio.Comment: 15 pages, 8 figures, accepted for publication in Astronomy and Astrophysics (with minor corrections

    Evidence for powerful AGN winds at high redshift: Dynamics of galactic outflows in radio galaxies during the "Quasar Era"

    Full text link
    AGN feedback now appears as an attractive mechanism to resolve some of the outstanding problems with the "standard" cosmological models, in particular those related to massive galaxies. To directly constrain how this may influence the formation of massive galaxies near the peak in the redshift distribution of powerful quasars, z~2, we present an analysis of the emission-line kinematics of 3 powerful radio galaxies at z~2-3 (HzRGs) based on rest-frame optical integral-field spectroscopy obtained with SINFONI on the VLT. HzRGs are among the most massive galaxies, so AGN feedback may have a particularly clear signature. We find evidence for bipolar outflows in all HzRGs, with kinetic energies that are equivalent to 0.2% of the rest-mass of the supermassive black hole. Velocity offsets in the outflows are ~800-1000 km s^-1 between the blueshifted and redshifted line emission, FWHMs ~1000 km s^-1 suggest strong turbulence. Ionized gas masses estimated from the Ha luminosity are of order 10^10 M_s, similar to the molecular gas content of HzRGs, underlining that these outflows may indicate a significant phase in the evolution of the host galaxy. The total energy release of ~10^60 erg during a dynamical time of ~10^7 yrs corresponds to about the binding energy of a massive galaxy. Geometry, timescales and energy injection rates of order 10% of the kinetic energy flux of the jet suggest that the outflows are most likely driven by the radio source. The global energy density release of ~10^57 erg s^-1 Mpc^-3 may also influence the subsequent evolution of the HzRG by enhancing the entropy and pressure in the surrounding halo and facilitating ram-pressure stripping of gas in satellite galaxies that may contribute to the subsequent mass assembly of the HzRG through low-dissipation "dry" mergers.Comment: A&A in press, minor edits & typo in table captions 2-
    corecore