7,793 research outputs found
Balloon-borne radiometer measurement of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years
Low-resolution atmospheric thermal emission spectra collected by balloon-borne radiometers over the time span of 1990–2002 are used to retrieve vertical profiles of HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km altitude. All of the data analyzed have been collected from launches from a Northern Hemisphere mid-latitude site, during late summer, when stratospheric dynamic variability is at a minimum. The retrieval technique incorporates detailed forward modeling of the instrument and the radiative properties of the atmosphere, and obtains a best fit between modeled and measured spectra through a combination of onion-peeling and global optimization steps. The retrieved HNO3 profiles are consistent over the 12-year period, and are consistent with recent measurements by the Atmospheric Chemistry Experiment-Fourier transform spectrometer satellite instrument. This suggests that, to within the errors of the 1990 measurements, there has been no significant change in the HNO3 summer mid-latitude profile
Memory and superposition in a spin glass
Non-equilibrium dynamics in a Ag(Mn) spin glass are investigated by
measurements of the temperature dependence of the remanent magnetisation. Using
specific cooling protocols before recording the thermo- or isothermal remanent
magnetisations on re-heating, it is found that the measured curves effectively
disclose non-equilibrium spin glass characteristics such as ageing and memory
phenomena as well as an extended validity of the superposition principle for
the relaxation. The usefulness of this "simple" dc-method is discussed, as well
as its applicability to other disordered magnetic systems.Comment: REVTeX style; 8 pages, 4 figure
Non-equilibrium dynamics in an interacting nanoparticle system
Non-equilibrium dynamics in an interacting Fe-C nanoparticle sample,
exhibiting a low temperature spin glass like phase, has been studied by low
frequency ac-susceptibility and magnetic relaxation experiments. The
non-equilibrium behavior shows characteristic spin glass features, but some
qualitative differences exist. The nature of these differences is discussed.Comment: 7 pages, 11 figure
Selfoscillations of Suspended Carbon Nanotubes with a Deflection Sensitive Resistance under Voltage Bias
We theoretically investigate the electro-mechanics of a Suspended Carbon
Nanotube with a Deflection Sensitive Resistance subjected to a homogeneous
Magnetic Field and a constant Voltage Bias. We show that, (with the exception
of a singular case), for a sufficiently high magnetic field the
time-independent state of charge transport through the nanotube becomes
unstable to selfexcitations of the mechanical vibration accompanied by
oscialltions in the voltage drop and current across the nanotube.Comment: 4 pages, 1 figur
Relaxation of the field-cooled magnetization of an Ising spin glass
The time and temperature dependence of the field-cooled magnetization of a
three dimensional Ising spin glass, Fe_{0.5}Mn_{0.5}TiO_{3}, has been
investigated. The temperature and cooling rate dependence is found to exhibit
memory phenomena that can be related to the memory behavior of the low
frequency ac-susceptibility. The results add some further understanding on how
to model the three dimensional Ising spin glass in real space.Comment: 8 pages RevTEX, 5 figure
A theory of normed simulations
In existing simulation proof techniques, a single step in a lower-level
specification may be simulated by an extended execution fragment in a
higher-level one. As a result, it is cumbersome to mechanize these techniques
using general purpose theorem provers. Moreover, it is undecidable whether a
given relation is a simulation, even if tautology checking is decidable for the
underlying specification logic. This paper introduces various types of normed
simulations. In a normed simulation, each step in a lower-level specification
can be simulated by at most one step in the higher-level one, for any related
pair of states. In earlier work we demonstrated that normed simulations are
quite useful as a vehicle for the formalization of refinement proofs via
theorem provers. Here we show that normed simulations also have pleasant
theoretical properties: (1) under some reasonable assumptions, it is decidable
whether a given relation is a normed forward simulation, provided tautology
checking is decidable for the underlying logic; (2) at the semantic level,
normed forward and backward simulations together form a complete proof method
for establishing behavior inclusion, provided that the higher-level
specification has finite invisible nondeterminism.Comment: 31 pages, 10figure
Parametrization of dark energy equation of state Revisited
A comparative study of various parametrizations of the dark energy equation
of state is made. Astrophysical constraints from LSS, CMB and BBN are laid down
to test the physical viability and cosmological compatibility of these
parametrizations. A critical evaluation of the 4-index parametrizations reveals
that Hannestad-M\"{o}rtsell as well as Lee parametrizations are simple and
transparent in probing the evolution of the dark energy during the expansion
history of the universe and they satisfy the LSS, CMB and BBN constraints on
the dark energy density parameter for the best fit values.Comment: 11 page
Stability and electronic structure of the complex KPtCl structure-type hydrides
The stability and bonding of the ternary complex KPtCl structure
hydrides is discussed using first principles density functional calculations.
The cohesion is dominated by ionic contributions, but ligand field effects are
important, and are responsible for the 18-electron rule. Similarities to oxides
are discussed in terms of the electronic structure. However, phonon
calculations for SrRuH also show differences, particularly in the
polarizability of the RuH octahedra. Nevertheless, the yet to be made
compounds PbRuH and BeFeH are possible ferroelectrics. The
electronic structure and magnetic properties of the decomposition product,
FeBe are reported. Implications of the results for H storage are discussed
- …