83 research outputs found
Application of Consensus Scoring and Principal Component Analysis for Virtual Screening against β-Secretase (BACE-1)
BACKGROUND: In order to identify novel chemical classes of β-secretase (BACE-1) inhibitors, an alternative scoring protocol, Principal Component Analysis (PCA), was proposed to summarize most of the information from the original scoring functions and re-rank the results from the virtual screening against BACE-1. METHOD: Given a training set (50 BACE-1 inhibitors and 9950 inactive diverse compounds), three rank-based virtual screening methods, individual scoring, conventional consensus scoring and PCA, were judged by the hit number in the top 1% of the ranked list. The docking poses were generated by Surflex, five scoring functions (Surflex_Score, D_Score, G_Score, ChemScore, and PMF_Score) were used for pose extraction. For each pose group, twelve scoring functions (Surflex_Score, D_Score, G_Score, ChemScore, PMF_Score, LigScore1, LigScore2, PLP1, PLP2, jain, Ludi_1, and Ludi_2) were used for the pose rank. For a test set, 113,228 chemical compounds (Sigma-Aldrich® corporate chemical directory) were docked by Surflex, then ranked by the same three ranking methods motioned above to select the potential active compounds for experimental test. RESULTS: For the training set, the PCA approach yielded consistently superior rankings compared to conventional consensus scoring and single scoring. For the test set, the top 20 compounds according to conventional consensus scoring were experimentally tested, no inhibitor was found. Then, we relied on PCA scoring protocol to test another different top 20 compounds and two low micromolar inhibitors (S450588 and 276065) were emerged through the BACE-1 fluorescence resonance energy transfer (FRET) assay. CONCLUSION: The PCA method extends the conventional consensus scoring in a quantitative statistical manner and would appear to have considerable potential for chemical screening applications
Computational Identification of Uncharacterized Cruzain Binding Sites
Chagas disease, caused by the unicellular parasite Trypanosoma cruzi, claims 50,000 lives annually and is the leading cause of infectious myocarditis in the world. As current antichagastic therapies like nifurtimox and benznidazole are highly toxic, ineffective at parasite eradication, and subject to increasing resistance, novel therapeutics are urgently needed. Cruzain, the major cysteine protease of Trypanosoma cruzi, is one attractive drug target. In the current work, molecular dynamics simulations and a sequence alignment of a non-redundant, unbiased set of peptidase C1 family members are used to identify uncharacterized cruzain binding sites. The two sites identified may serve as targets for future pharmacological intervention
Novel Allosteric Sites on Ras for Lead Generation
Aberrant Ras activity is a hallmark of diverse cancers and developmental diseases. Unfortunately, conventional efforts to develop effective small molecule Ras inhibitors have met with limited success. We have developed a novel multi-level computational approach to discover potential inhibitors of previously uncharacterized allosteric sites. Our approach couples bioinformatics analysis, advanced molecular simulations, ensemble docking and initial experimental testing of potential inhibitors. Molecular dynamics simulation highlighted conserved allosteric coupling of the nucleotide-binding switch region with distal regions, including loop 7 and helix 5. Bioinformatics methods identified novel transient small molecule binding pockets close to these regions and in the vicinity of the conformationally responsive switch region. Candidate binders for these pockets were selected through ensemble docking of ZINC and NCI compound libraries. Finally, cell-based assays confirmed our hypothesis that the chosen binders can inhibit the downstream signaling activity of Ras. We thus propose that the predicted allosteric sites are viable targets for the development and optimization of new drugs
Structure-based drug discovery for combating influenza virus by targeting the PA?PB1 interaction
Influenza virus infections are serious public health concerns throughout the world. The development of compounds with novel mechanisms of action is urgently required due to the emergence of viruses with resistance to the currently-approved anti-influenza viral drugs. We performed in silico screening using a structure-based drug discovery algorithm called Nagasaki University Docking Engine (NUDE), which is optimised for a GPU-based supercomputer (DEstination for Gpu Intensive MAchine; DEGIMA), by targeting influenza viral PA protein. The compounds selected by NUDE were tested for anti-influenza virus activity using a cell-based assay. The most potent compound, designated as PA-49, is a medium-sized quinolinone derivative bearing a tetrazole moiety, and it inhibited the replication of influenza virus A/WSN/33 at a half maximal inhibitory concentration of 0.47?μM. PA-49 has the ability to bind PA and its anti-influenza activity was promising against various influenza strains, including a clinical isolate of A(H1N1)pdm09 and type B viruses. The docking simulation suggested that PA-49 interrupts the PA?PB1 interface where important amino acids are mostly conserved in the virus strains tested, suggesting the strain independent utility. Because our NUDE/DEGIMA system is rapid and efficient, it may help effective drug discovery against the influenza virus and other emerging viruses
Structure-Based Virtual Screening for Drug Discovery: a Problem-Centric Review
Structure-based virtual screening (SBVS) has been widely applied in early-stage drug discovery. From a problem-centric perspective, we reviewed the recent advances and applications in SBVS with a special focus on docking-based virtual screening. We emphasized the researchers’ practical efforts in real projects by understanding the ligand-target binding interactions as a premise. We also highlighted the recent progress in developing target-biased scoring functions by optimizing current generic scoring functions toward certain target classes, as well as in developing novel ones by means of machine learning techniques
Digital Technologies in Routine Palliative Care Delivery: An Exploratory Qualitative Study with Health Care Professionals in Germany
Abstract Objective To explore health care professionals’ (HCPs) perspectives, experiences and preferences towards digital technology use in routine palliative care delivery. Methods HCPs (n = 19) purposively selected from a sample of settings that reflect routine palliative care delivery (i.e. specialized outpatient palliative care, inpatient palliative care, inpatient hospice care in both rural and urban areas of the German states of Brandenburg and Berlin) participated in an explorative, qualitative study using semi-structured interviews. Interview data were analyzed using structured qualitative content analysis. Results Digital technologies are widely used in routine palliative care and are well accepted by HCPs. Central functions of digital technologies as experienced in palliative care are coordination of work processes, patient-centered care, and communication. Especially in outpatient care, they facilitate overcoming spatial and temporal distances. HCPs attribute various benefits to digital technologies that contribute to better coordinated, faster, more responsive, and overall more effective palliative care. Simultaneously, participants preferred technology as an enhancement not replacement of care delivery. HCPs fear that digital technologies, if overused, will contribute to dehumanization and thus significantly reduce the quality of palliative care. Conclusion Digital technology is already an essential part of routine palliative care delivery. While generally perceived as useful by HCPs, digital technologies are considered as having limitations and carrying risks. Hence, their use and consequences must be carefully considered, as they should discreetly complement but not replace human interaction in palliative care delivery
- …