488 research outputs found
Ultrafast spectroscopy of propagating coherent acoustic phonons in GaN/InGaN heterostructures
We show that large amplitude, coherent acoustic phonon wavepackets can be
generated and detected in InGaN/GaN epilayers and heterostructures
in femtosecond pump-probe differential reflectivity experiments. The amplitude
of the coherent phonon increases with increasing Indium fraction and unlike
other coherent phonon oscillations, both \textit{amplitude} and \textit{period}
are strong functions of the laser probe energy. The amplitude of the
oscillation is substantially and almost instantaneously reduced when the
wavepacket reaches a GaN-sapphire interface below the surface indicating that
the phonon wavepackets are useful for imaging below the surface. A theoretical
model is proposed which fits the experiments well and helps to deduce the
strength of the phonon wavepackets. Our model shows that localized coherent
phonon wavepackets are generated by the femtosecond pump laser in the epilayer
near the surface. The wavepackets then propagate through a GaN layer changing
the local index of refraction, primarily through the Franz-Keldysh effect, and
as a result, modulate the reflectivity of the probe beam. Our model correctly
predicts the experimental dependence on probe-wavelength as well as epilayer
thickness.Comment: 11 pages, 14 figure
Giant Superfluorescent Bursts from a Semiconductor Magnetoplasma
Currently, considerable resurgent interest exists in the concept of
superradiance (SR), i.e., accelerated relaxation of excited dipoles due to
cooperative spontaneous emission, first proposed by Dicke in 1954. Recent
authors have discussed SR in diverse contexts, including cavity quantum
electrodynamics, quantum phase transitions, and plasmonics. At the heart of
these various experiments lies the coherent coupling of constituent particles
to each other via their radiation field that cooperatively governs the dynamics
of the whole system. In the most exciting form of SR, called superfluorescence
(SF), macroscopic coherence spontaneously builds up out of an initially
incoherent ensemble of excited dipoles and then decays abruptly. Here, we
demonstrate the emergence of this photon-mediated, cooperative, many-body state
in a very unlikely system: an ultradense electron-hole plasma in a
semiconductor. We observe intense, delayed pulses, or bursts, of coherent
radiation from highly photo-excited semiconductor quantum wells with a
concomitant sudden decrease in population from total inversion to zero. Unlike
previously reported SF in atomic and molecular systems that occur on nanosecond
time scales, these intense SF bursts have picosecond pulse-widths and are
delayed in time by tens of picoseconds with respect to the excitation pulse.
They appear only at sufficiently high excitation powers and magnetic fields and
sufficiently low temperatures - where various interactions causing decoherence
are suppressed. We present theoretical simulations based on the relaxation and
recombination dynamics of ultrahigh-density electron-hole pairs in a quantizing
magnetic field, which successfully capture the salient features of the
experimental observations.Comment: 21 pages, 4 figure
Exceptionally Slow Rise in Differential Reflectivity Spectra of Excitons in GaN: Effect of Excitation-induced Dephasing
Femtosecond pump-probe (PP) differential reflectivity spectroscopy (DRS) and
four-wave mixing (FWM) experiments were performed simultaneously to study the
initial temporal dynamics of the exciton line-shapes in GaN epilayers. Beats
between the A-B excitons were found \textit{only for positive time delay} in
both PP and FWM experiments. The rise time at negative time delay for the
differential reflection spectra was much slower than the FWM signal or PP
differential transmission spectroscopy (DTS) at the exciton resonance. A
numerical solution of a six band semiconductor Bloch equation model including
nonlinearities at the Hartree-Fock level shows that this slow rise in the DRS
results from excitation induced dephasing (EID), that is, the strong density
dependence of the dephasing time which changes with the laser excitation
energy.Comment: 8 figure
Dark-bright magneto-exciton mixing induced by Coulomb interaction in strained quantum wells
Coupled magneto-exciton states between allowed (`bright') and forbidden
(`dark') transitions are found in absorption spectra of strained
InGaAs/GaAs quantum wells with increasing magnetic field up to
30 T. We found large (~ 10 meV) energy splittings in the mixed states. The
observed anticrossing behavior is independent of polarization, and sensitive
only to the parity of the quantum confined states. Detailed experimental and
theoretical investigations indicate that the excitonic Coulomb interaction
rather than valence band complexity is responsible for the splittings. In
addition, we determine the spin composition of the mixed states.Comment: 4 pages, 4 figure
Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma
We investigate photoluminescence from a high-density electron-hole plasma in
semiconductor quantum wells created via intense femtosecond excitation in a
strong perpendicular magnetic field, a fully-quantized and tunable system. At a
critical magnetic field strength and excitation fluence, we observe a clear
transition in the band-edge photoluminescence from omnidirectional output to a
randomly directed but highly collimated beam. In addition, changes in the
linewidth, carrier density, and magnetic field scaling of the PL spectral
features correlate precisely with the onset of random directionality,
indicative of cooperative recombination from a high density population of free
carriers in a semiconductor environment
Recommended from our members
Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling
Dishevelled (Dvl) is a key regulator of Wnt signaling both in the canonical and non-canonical pathways. Here we report the identification of a regulatory domain of ubiquitination (RDU) in the C-terminus of Dvl. Mutations in the RDU resulted in accumulation of polyubiquitinated forms of Dvl, which were mainly K63 linked. Small interfering RNA-based screening identified Usp14 as a mediator of Dvl deubiquitination. Genetic and chemical suppression of Usp14 activity caused an increase in Dvl polyubiquitination and significantly impaired downstream Wnt signaling. These data suggest that Usp14 functions as a positive regulator of the Wnt signaling pathway. Consistently, tissue microarray analysis of colon cancer revealed a strong correlation between the levels of Usp14 and β-catenin, which suggests an oncogenic role for Usp14 via enhancement of Wnt/β-catenin signaling
Fractionation of cellulose nanocrystals : enhancing liquid crystal ordering without promoting gelation
Colloids of electrically charged nanorods can spontaneously develop a fluid yet ordered liquid crystal phase, but this ordering competes with a tendency to form a gel of percolating rods. The threshold for ordering is reduced by increasing the rod aspect ratio, but the percolation threshold is also reduced with this change; hence, prediction of the outcome is nontrivial. Here, we show that by establishing the phase behavior of suspensions of cellulose nanocrystals (CNCs) fractionated according to length, an increased aspect ratio can strongly favor liquid crystallinity without necessarily influencing gelation. Gelation is instead triggered by increasing the counterion concentration until the CNCs lose colloidal stability, triggering linear aggregation, which promotes percolation regardless of the original rod aspect ratio. Our results shine new light on the competition between liquid crystal formation and gelation in nanoparticle suspensions and provide a path for enhanced control of CNC self-organization for applications in photonic crystal paper or advanced composites
- …
