2 research outputs found

    Valence-band orbital character of CdO: A synchrotron-radiation photoelectron spectroscopy and density functional theory study

    No full text
    N-type CdO is a transparent conducting oxide (TCO) which has promise in a number of areas including solar cell applications. In order to realize this potential a detailed knowledge of the electronic structure of the material is essential. In particular, standard density functional theory (DFT) methods struggle to accurately predict fundamental material properties such as the band gap. This is largely due to the underestimation of the Cd 4d binding energy, which results in a strong hybridization with the valence-band (VB) states. In order to test theoretical approaches, comparisons to experiment need to be made. Here, synchrotron-radiation photoelectron spectroscopy (SR-PES) measurements are presented, and comparison with three theoretical approaches are made. In particular the position of the Cd 4d state is measured with hard x-ray PES, and the orbital character of the VB is probed by photon energy dependent measurements. It is found that LDA + U using a theoretical U value of 2.34 eV is very successful in predicting the position of the Cd 4d state. The VB photon energy dependence reveals the O 2p photoionization cross section is underestimated at higher photon energies, and that an orbital contribution from Cd 5p is underestimated by all the DFT approaches. © 2014 American Physical Society

    Hard x-ray photoelectron spectroscopy as a probe of the intrinsic electronic properties of CdO

    No full text
    Hard x-ray photoelectron spectroscopy (HAXPES) is used to investigate the intrinsic electronic properties of single crystal epitaxial CdO(100) thin films grown by metal organic vapor phase epitaxy (MOVPE). The reduced surface sensitivity of the HAXPES technique relaxes stringent surface preparation requirements, thereby allowing the measurement of as-grown samples with intrinsically higher carrier concentration (n=2.4×1020cm-3). High-resolution HAXPES spectra of the valence band and core levels measured at photon energy of 6054 eV are presented. The effects of conduction band filling and band gap renormalization are discussed to explain the observed binding energy shifts. The measured bandwidth of the partially occupied conduction band feature indicates that a plasmon contribution may be present at higher carrier concentrations. The Cd 3d5/2 and O 1s core-level line shapes are found to exhibit an increased asymmetry with increased carrier concentration, interpreted as evidence for final state screening effects from the carriers in the conduction band. Alternatively the core-level line shape is interpreted as arising from strong conduction electron plasmon satellites. The nature of these two competing models to describe core-level line shapes in metallic oxides is explored. © 2014 American Physical Society
    corecore