557 research outputs found
Cosmological implications of the KATRIN experiment
The upcoming Karlsruhe Tritium Neutrino (KATRIN) experiment will put
unprecedented constraints on the absolute mass of the electron neutrino,
\mnue. In this paper we investigate how this information on \mnue will
affect our constraints on cosmological parameters. We consider two scenarios;
one where \mnue=0 (i.e., no detection by KATRIN), and one where
\mnue=0.3eV. We find that the constraints on \mnue from KATRIN will affect
estimates of some important cosmological parameters significantly. For example,
the significance of and the inferred value of depend
on the results from the KATRIN experiment.Comment: 13 page
A Census of Star-Forming Galaxies in the z~9-10 Universe based on HST+Spitzer Observations Over 19 CLASH clusters: Three Candidate z~9-10 Galaxies and Improved Constraints on the Star Formation Rate Density at z~9
We utilise a two-color Lyman-Break selection criterion to search for z~9-10
galaxies over the first 19 clusters in the CLASH program. A systematic search
yields three z~9-10 candidates. While we have already reported the most robust
of these candidates, MACS1149-JD, two additional z~9 candidates are also found
and have H_{160}-band magnitudes of ~26.2-26.9. A careful assessment of various
sources of contamination suggests <~1 contaminants for our z~9-10 selection. To
determine the implications of these search results for the LF and SFR density
at z~9, we introduce a new differential approach to deriving these quantities
in lensing fields. Our procedure is to derive the evolution by comparing the
number of z~9-10 galaxy candidates found in CLASH with the number of galaxies
in a slightly lower redshift sample (after correcting for the differences in
selection volumes), here taken to be z~8. This procedure takes advantage of the
fact that the relative volumes available for the z~8 and z~9-10 selections
behind lensing clusters are not greatly dependent on the details of the lensing
models. We find that the normalization of the UV LF at z~9 is just
0.28_{-0.20}^{+0.39}\times that at z~8, ~1.4_{-0.8}^{+3.0}x lower than
extrapolating z~4-8 LF results. While consistent with the evolution in the UV
LF seen at z~4-8, these results marginally favor a more rapid evolution at z>8.
Compared to similar evolutionary findings from the HUDF, our result is less
insensitive to large-scale structure uncertainties, given our many independent
sightlines on the high-redshift universe.Comment: 22 pages, 11 figures, 5 tables, accepted for publication in the
Astrophysical Journal, updated to include the much deeper Spitzer/IRAC
observations over our three z~9-10 candidate
CLASH: A Census of Magnified Star-Forming Galaxies at z ~ 6-8
We utilize 16 band Hubble Space Telescope (HST) observations of 18 lensing
clusters obtained as part of the Cluster Lensing And Supernova survey with
Hubble (CLASH) Multi-Cycle Treasury program to search for galaxies.
We report the discovery of 204, 45, and 13 Lyman-break galaxy candidates at
, , and , respectively, identified from purely
photometric redshift selections. This large sample, representing nearly an
order of magnitude increase in the number of magnified star-forming galaxies at
presented to date, is unique in that we have observations in four
WFC3/UVIS UV, seven ACS/WFC optical, and all five WFC3/IR broadband filters,
which enable very accurate photometric redshift selections. We construct
detailed lensing models for 17 of the 18 clusters to estimate object
magnifications and to identify two new multiply lensed
candidates. The median magnifications over the 17 clusters are 4, 4, and 5 for
the , , and samples, respectively, over an average
area of 4.5 arcmin per cluster. We compare our observed number counts with
expectations based on convolving "blank" field UV luminosity functions through
our cluster lens models and find rough agreement down to mag, where we
begin to suffer significant incompleteness. In all three redshift bins, we find
a higher number density at brighter observed magnitudes than the field
predictions, empirically demonstrating for the first time the enhanced
efficiency of lensing clusters over field surveys. Our number counts also are
in general agreement with the lensed expectations from the cluster models,
especially at , where we have the best statistics.Comment: Accepted for publication in the Astrophysical Journal, 25 pages, 13
figures, 7 table
Directional detection as a strategy to discover Galactic Dark Matter
Directional detection of Galactic Dark Matter is a promising search strategy
for discriminating genuine WIMP events from background ones. Technical progress
on gaseous detectors and read-outs has permitted the design and construction of
competitive experiments. However, to take full advantage of this powerful
detection method, one need to be able to extract information from an observed
recoil map to identify a WIMP signal. We present a comprehensive formalism,
using a map-based likelihood method allowing to recover the main incoming
direction of the signal and its significance, thus proving its galactic origin.
This is a blind analysis intended to be used on any directional data.
Constraints are deduced in the () plane and systematic
studies are presented in order to show that, using this analysis tool,
unambiguous dark matter detection can be achieved on a large range of exposures
and background levels.Comment: 20 pages, 5 figures Final version to appear in Phys. Lett.
What it takes to measure a fundamental difference between dark matter and baryons: the halo velocity anisotropy
Numerous ongoing experiments aim at detecting WIMP dark matter particles from
the galactic halo directly through WIMP-nucleon interactions. Once such a
detection is established a confirmation of the galactic origin of the signal is
needed. This requires a direction-sensitive detector. We show that such a
detector can measure the velocity anisotropy beta of the galactic halo.
Cosmological N-body simulations predict the dark matter anisotropy to be
nonzero, beta~0.2. Baryonic matter has beta=0 and therefore a detection of a
nonzero beta would be strong proof of the fundamental difference between dark
and baryonic matter. We estimate the sensitivity for various detector
configurations using Monte Carlo methods and we show that the strongest signal
is found in the relatively few high recoil energy events. Measuring beta to the
precision of ~0.03 will require detecting more than 10^4 WIMP events with
nuclear recoil energies greater than 100 keV for a WIMP mass of 100 GeV and a
32S target. This number corresponds to ~10^6 events at all energies. We discuss
variations with respect to input parameters and we show that our method is
robust to the presence of backgrounds and discuss the possible improved
sensitivity for an energy-sensitive detector.Comment: 15 pages, 8 figures, accepted by JCAP. Matches accepted versio
Charge amplification concepts for direction-sensitive dark matter detectors
Direction measurement of weakly interacting massive particles in
time-projection chambers can provide definite evidence of their existence and
help to determine their properties. This article demonstrates several concepts
for charge amplification in time-projection chambers that can be used in
direction-sensitive dark matter search experiments. We demonstrate
reconstruction of the 'head-tail' effect for nuclear recoils above 100keV, and
discuss the detector performance in the context of dark matter detection and
scaling to large detector volumes.Comment: 15 pages, 9 figure
CLASH: z ~ 6 young galaxy candidate quintuply lensed by the frontier field cluster RXC J2248.7-4431
We present a quintuply lensed z ~ 6 candidate discovered in the field of the
galaxy cluster RXC J2248.7-4431 (z ~ 0.348) targeted within the Cluster Lensing
and Supernova survey with Hubble (CLASH) and selected in the deep HST Frontier
Fields survey. Thanks to the CLASH 16-band HST imaging, we identify the
quintuply lensed z ~ 6 candidate as an optical dropout in the inner region of
the cluster, the brightest image having magAB=24.81+-0.02 in the f105w filter.
We perform a detailed photometric analysis to verify its high-z and lensed
nature. We get as photometric redshift z_phot ~ 5.9, and given the extended
nature and NIR colours of the lensed images, we rule out low-z early type and
galactic star contaminants. We perform a strong lensing analysis of the
cluster, using 13 families of multiple lensed images identified in the HST
images. Our final best model predicts the high-z quintuply lensed system with a
position accuracy of 0.8''. The magnifications of the five images are between
2.2 and 8.3, which leads to a delensed UV luminosity of L_1600 ~ 0.5L*_1600 at
z=6. We also estimate the UV slope from the observed NIR colours, finding a
steep beta=-2.89+-0.38. We use singular and composite stellar population SEDs
to fit the photometry of the hiz candidate, and we conclude that it is a young
(age <300 Myr) galaxy with mass of M ~ 10^8Msol, subsolar metallicity
(Z<0.2Zsol) and low dust content (AV ~ 0.2-0.4).Comment: 21 pages, 13 figures, 6 tables, submitted to MNRAS on 11 Aug 2013,
accepted on 23 Nov 201
Patient active time during therapy sessions in postacute rehabilitation: Development and validation of a new measure
BACKGROUND AND PURPOSE: The accurate measurement of therapy intensity in postacute rehabilitation is important for research to improve outcomes in this setting. We developed and validated a measure of Patient Active Time during physical (PT) and occupational therapy (OT) sessions, as a proxy for therapy intensity. METHODS: This measurement validity study was carried out with 26 older adults admitted to a skilled nursing facility (SNF) for postacute rehabilitation with a variety of main underlying diagnoses, including hip fracture, cardiovascular diseases, stroke, and others. They were participants in a randomized controlled trial that compared an experimental high-intensity therapy to standard-of-care therapy. Patient Active Time was observed by research raters as the total number of minutes that a patient was actively engaging in therapeutic activities during PT and OT sessions. This was compared to patient movement (actigraphy) quantified during some of the same PT/OT sessions using data from three-dimensional accelerometers worn on the patient’s extremities. RESULTS: Activity measures were collected for 136 therapy sessions. Patient Active Time had high interrater reliability in both PT (r = 0.995, p < 0.001) and OT (r = 0.95, p = 0.012). Active time was significantly correlated with actigraphy in both PT (r = 0.73, p < 0.001) and OT (r = 0.60, p < 0.001) and discriminated between a high-intensity experimental condition and standard of care rehabilitation: in PT, 47.0 ± 13.5 min versus 16.7 ± 10.1 min (p < 0.001) and in OT, 46.2 ± 15.2 versus 27.7 ± 6.6 min (p < 0.001). CONCLUSIONS: Systematic observation of Patient Active Time provides an objective, reliable, and valid index of physical activity during PT and OT treatment sessions that has utility as a real-world alternative to the measurement of treatment intensity. This measure could be used to differentiate higher from lower therapy treatment intensity and to help determine the optimal level of active therapy time for patients in postacute and other settings
CLASH: Photometric redshifts with 16 HST bands in galaxy cluster fields
The Cluster Lensing And Supernovae survey with Hubble (CLASH) is an Hubble
Space Telescope (HST) Multi-Cycle Treasury program observing 25 massive galaxy
clusters. CLASH observations are carried out in 16 bands from UV to NIR to
derive accurate and reliable estimates of photometric redshifts. We present the
CLASH photometric redshifts and study the photometric redshift accuracy of the
arcs in more detail for the case of MACS1206.2-0847. We use the publicly
available Le Phare and BPZ photometric redshift codes on 17 CLASH galaxy
clusters. Using Le Phare code for objects with StoN>=10, we reach a precision
of 3%(1+z) for the strong lensing arcs, which is reduced to 2.4%(1+z) after
removing outliers. For galaxies in the cluster field the corresponding values
are 4%(1+z) and 3%(1+z). Using mock galaxy catalogues, we show that 3%(1+z)
precision is what one would expect from the CLASH photometry when taking into
account extinction from dust, emission lines and the finite range of SEDs
included in the photo-z template library. We study photo-z results for
different aperture photometry and find that the SExtractor isophotal photometry
works best. Le Phare and BPZ give similar photo-z results for the strong
lensing arcs as well as galaxies of the cluster field. Results are improved
when optimizing the photometric aperture shape showing an optimal aperture size
around 1" radius giving results which are equivalent to isophotal photometry.
Tailored photometry of the arcs improve the photo-z results.Comment: Accepted in A&A on nov 201
The Cluster Lensing and Supernova Survey with Hubble (CLASH): Strong Lensing Analysis of Abell 383 from 16-Band HST WFC3/ACS Imaging
We examine the inner mass distribution of the relaxed galaxy cluster Abell
383 in deep 16-band HST/ACS+WFC3 imaging taken as part of the CLASH multi-cycle
treasury program. Our program is designed to study the dark matter distribution
in 25 massive clusters, and balances depth with a wide wavelength coverage to
better identify lensed systems and generate precise photometric redshifts. This
information together with the predictive strength of our strong-lensing
analysis method identifies 13 new multiply-lensed images and candidates, so
that a total of 27 multiple-images of 9 systems are used to tightly constrain
the inner mass profile, (r<160 kpc).
We find consistency with the standard distance-redshift relation for the full
range spanned by the lensed images, 1.01<z<6.03, with the higher redshift
sources deflected through larger angles as expected. The inner mass profile
derived here is consistent with the results of our independent weak-lensing
analysis of wide-field Subaru images, with good agreement in the region of
overlap. The overall mass profile is well fitted by an NFW profile with
M_{vir}=(5.37^{+0.70}_{-0.63}\pm 0.26) x 10^{14}M_{\odot}/h and a relatively
high concentration, c_{vir}=8.77^{+0.44}_{-0.42}\pm 0.23, which lies above the
standard c-M relation similar to other well-studied clusters. The critical
radius of Abell 383 is modest by the standards of other lensing clusters,
r_{E}\simeq16\pm2\arcsec (for z_s=2.55), so the relatively large number of
lensed images uncovered here with precise photometric redshifts validates our
imaging strategy for the CLASH survey. In total we aim to provide similarly
high-quality lensing data for 25 clusters, 20 of which are X-ray selected
relaxed clusters, enabling a precise determination of the representative mass
profile free from lensing bias. (ABRIDGED)Comment: 15 pages, 14 figures, 2 tabels; V3 matches the submitted version
later published in Ap
- …
