74 research outputs found

    Roadside Weed and Brush Control with Chemicals

    Get PDF
    This bulletin, developed primarily for the highway engineer and the county road supervisor, describes the more important herbicide materials available for roadsides, their recommended use, and application methods. Information is also provided to help county road officials develop better weed and brush control programs for county road systems. The last part of the bulletin covers details of planning a county-wide weed and brush control program

    Planning and Financing County Bridge Programs

    Get PDF
    This manual has been developed to review several different areas of information related to county bridge improvement programs, including (1) the authority and jurisdiction over county bridges (Section II), (2) the various sources of funds for construction and repair of county bridges (Section III) , and (3) the fiscal process of making appropriations and expenditures for construction and repair of bridges (Section VI). These topics are presented in terms of the current Indiana statutes, and for this reason should be of considerable assistance to county road officials as a guide to the official duties of their office

    Field Identification of Soils and Aggregates for County Roads

    Get PDF
    The primary purpose of this bulletin is to provide instruction to Indiana county road personnel on rating the quality of soils and pit-run materials used in the construction and maintenance of county roads. A system of soil classification is presented which provides the county highway engineer, road supervisor and inspector alike, with a common language for identifying soil types, properties and problems

    Variability in supply and cross-shelf transport of pink shrimp (Farfantepenaeus duorarum) postlarvae into western Florida Bay

    Get PDF
    The variability in the supply of pink shrimp (Farfantepenaeus duorarum) postlarvae and the transport mechanisms of planktonic stages were investigated with field data and simulations of transport. Postlarvae entering the nursery grounds of Florida Bay were collected for three consecutive years at channels that connect the Bay with the Gulf of Mexico, and in channels of the Middle Florida Keys that connect the southeastern margin of the Bay with the Atlantic Ocean. The influx of postlarvae in the Middle Florida Keys was low in magnitude and varied seasonally and among years. In contrast, the greater postlarval influx occurred at the northwestern border of the Bay, where there was a strong seasonal pattern with peaks in influx from July through September each year. Planktonic stages need to travel up to 150 km eastward between spawning grounds (northeast of Dry Tortugas) and nursery grounds (western Florida Bay) in about 30 days, the estimated time of planktonic development for this species. A Lagrangian trajectory model was developed to estimate the drift of planktonic stages across the SW Florida shelf. The model simulated the maximal distance traveled by planktonic stages under various assumptions of behavior. Simulation results indicated that larvae traveling with the instantaneous current and exhibiting a diel behavior travel up to 65 km and 75% of the larvae travel only 30 km. However, the eastward distance traveled increased substantially when a larval response to tides was added to the behavioral variable (distance increased to 200 km and 85% of larvae traveled 150 km). The question is, when during larval development, and where on the shallow SW Florida shelf, does the tidal response become incorporated into the behavior of pink shrimp

    Field Investigation of County Road Bases and Subgrades

    Get PDF
    This bulletin focuses on the investigation, sampling, and testing of in-place wearing surface materials, in-place base materials, and in-place subgrade materials in advance of paving. This is especially important the first time the road is to be blacktopped. However, the investigation and testing methods suggested herein are equally applicable to existing blacktop pavements needing reconstruction. The test methods focus on two quick field tests that have been developed through research to measure equivalent CBR values. CBR is a measure of the load-carrying capacity of base or subgrade materials. The methods and procedures set forth in this bulletin should go far in helping county road officials plan for a better, more efficient use of county highway construction funds

    Cleaning Genesis Sample Return Canister for Flight: Lessons for Planetary Sample Return

    Get PDF
    Sample return missions require chemical contamination to be minimized and potential sources of contamination to be documented and preserved for future use. Genesis focused on and successfully accomplished the following: - Early involvement provided input to mission design: a) cleanable materials and cleanable design; b) mission operation parameters to minimize contamination during flight. - Established contamination control authority at a high level and developed knowledge and respect for contamination control across all institutions at the working level. - Provided state-of-the-art spacecraft assembly cleanroom facilities for science canister assembly and function testing. Both particulate and airborne molecular contamination was minimized. - Using ultrapure water, cleaned spacecraft components to a very high level. Stainless steel components were cleaned to carbon monolayer levels (10 (sup 15) carbon atoms per square centimeter). - Established long-term curation facility Lessons learned and areas for improvement, include: - Bare aluminum is not a cleanable surface and should not be used for components requiring extreme levels of cleanliness. The problem is formation of oxides during rigorous cleaning. - Representative coupons of relevant spacecraft components (cut from the same block at the same time with identical surface finish and cleaning history) should be acquired, documented and preserved. Genesis experience suggests that creation of these coupons would be facilitated by specification on the engineering component drawings. - Component handling history is critical for interpretation of analytical results on returned samples. This set of relevant documents is not the same as typical documentation for one-way missions and does include data from several institutions, which need to be unified. Dedicated resources need to be provided for acquiring and archiving appropriate documents in one location with easy access for decades. - Dedicated, knowledgeable contamination control oversight should be provided at sites of fabrication and integration. Numerous excellent Genesis chemists and analytical facilities participated in the contamination oversight; however, additional oversight at fabrication sites would have been helpful

    Cleaning Surface Particle Contamination with Ultrapure Water (UPW) Megasonic Flow on Genesis Array Collectors

    Get PDF
    The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments

    Genesis Spacecraft Science Canister Preliminary Inspection and Cleaning

    Get PDF
    The Genesis science canister is an aluminum cylinder (75 cm diameter and 35 cm tall) hinged at the mid-line for opening. This canister was cleaned and assembled in an ISO level 4 (Class 10) clean room at Johnson Space Center (JSC) prior to launch. The clean solar collectors were installed and the canister closed in the cleanroom to preserve collector cleanliness. The canister remained closed until opened on station at Earth-Sun L1 for solar wind collection. At the conclusion of collection, the canister was again closed to preserve collector cleanliness during Earth return and re-entry. Upon impacting the dry Utah lakebed at 300 kph the science canister integrity was breached. The canister was returned to JSC. The canister shell was briefly examined, imaged, gently cleaned of dust and packaged for storage in anticipation of future detailed examination. The condition of the science canister shell noted during this brief examination is presented here. The canister interior components were packaged and stored without imaging due to time constraints

    Genesis Solar Wind Sample Curation: A Progress Report

    Get PDF
    In the year since the Genesis solar wind collector fragments were returned, early science samples, specimens for cleaning experiments, and science allocations have been distributed. Solar wind samples are stored under nitrogen and handled in an ISO Class 4 (Class 10) laboratory. For array collector fragments, a basic characterization process has been established. This characterization consists of identification of solar wind regime, whole fragment image for identification and surface quality, higher magnification images for contaminant particle density, and assessment of molecular film contaminant thickness via ellipsometry modeling. Compilations of this characterization data for AuOS (gold film on sapphire), and sapphire from the bulk solar wind for fragments greater than 2 cm are available. Removal of contaminant particles using flowing ultrapure water (UPW) energized megasonically is provided as requested
    • …
    corecore