8,091 research outputs found
Lyapunov Exponents without Rescaling and Reorthogonalization
We present a new method for the computation of Lyapunov exponents utilizing
representations of orthogonal matrices applied to decompositions of M or
MM_trans where M is the tangent map. This method uses a minimal set of
variables, does not require renormalization or reorthogonalization, can be used
to efficiently compute partial Lyapunov spectra, and does not break down when
the Lyapunov spectrum is degenerate.Comment: 4 pages, no figures, uses RevTeX plus macro (included). Phys. Rev.
Lett. (in press
Phase Space Transport in Noisy Hamiltonian Systems
This paper analyses the effect of low amplitude friction and noise in
accelerating phase space transport in time-independent Hamiltonian systems that
exhibit global stochasticity. Numerical experiments reveal that even very weak
non-Hamiltonian perturbations can dramatically increase the rate at which an
ensemble of orbits penetrates obstructions like cantori or Arnold webs, thus
accelerating the approach towards an invariant measure, i.e., a
near-microcanonical population of the accessible phase space region. An
investigation of first passage times through cantori leads to three
conclusions, namely: (i) that, at least for white noise, the detailed form of
the perturbation is unimportant, (ii) that the presence or absence of friction
is largely irrelevant, and (iii) that, overall, the amplitude of the response
to weak noise scales logarithmically in the amplitude of the noise.Comment: 13 pages, 3 Postscript figures, latex, no macors. Annals of the New
York Academy of Sciences, in pres
Basin-level use and productivity of water: examples from South Asia
Water managementWater conservationRiver basinsWater useProductivityCase studiesIrrigated farmingIndicatorsWater scarcity
Manual measurement of retinal bifurcation features
This paper introduces a new computerized tool for
accurate manual measurement of features of retinal bifurcation
geometry, designed for use in investigating correlations between measurement features and clinical conditions. The tool uses user-placed rectangles to measure the vessel width, and lines placed along vessel center lines to measure the angles. An
analysis is presented of measurements taken from 435 bifurcations.
These are compared with theoretical predictions based on
optimality principles presented in the literature. The new tool shows better agreement with the theoretical predictions than a simpler manual method published in the literature, but there remains a significant discrepancy between current theory and measured geometry
Auxiliary variational MCMC
We introduce Auxiliary Variational MCMC, a novel framework for learning MCMC kernels that combines recent advances in variational inference with insights drawn from traditional auxiliary variable MCMC methods such as Hamiltonian Monte Carlo. Our framework exploits low dimensional structure in the target distribution in order to learn a more efficient MCMC sampler. The resulting sampler is able to suppress random walk behaviour and mix between modes efficiently, without the need to compute gradients of the target distribution. We test our sampler on a number of challenging distributions, where the underlying structure is known, and on the task of posterior sampling in Bayesian logistic regression. Code to reproduce all experiments is available at https://github.com/AVMCMC
Effect of debris size on the tribological performance of thermally sprayed coatings
This research aims to assess the effect of the debris particle size on the tribological performance
and lubrication regime parameters of a Ni-based alloy coating. This is a key industrial problem,
and its resolution can contribute to better machine endurance and proper maintenance.
The debris particles are simulated by hard Al2O3 particles of size ranging from nanometers to 45
μm and dispersed in an oil lubricant. The coating studied is NiCrBSi deposited by flame spraying
technique followed by the Surface Flame Melting (SFM) process. The counterpart disk sample
was fabricated from quenched and tempered F-5220 steel (in line with A681(O1) ASTM). This
pair was tested under linear sliding contact.
Our results show that the addition of alumina particles contributes to a significant increase in
wear, particularly for the largest particles (micrometric size). In the case of micrometric particles,
it is possible to observe the formation of higher surface roughness, numerous microgrooves, and
plastic flow of NiCrBSi coating perpendicular to the sliding direction, resulting in higher loss of
volume.
It was found that the actual surface roughness (obtained as a function of the debris particle size)
allows better identification and prediction of the lubrication regime for wear processes instead of
the traditional approach that uses the initial surface roughness as a parameter
Resource targets for advanced underground coal extraction systems
Resource targets appropriate for federal sponsorship of research and development of advanced underground coal mining systems are identified. A comprehensive examination of conventional and unconventional coals with particular attention to exceptionally thin and thick seams, steeply dipping beds, and multiple seam geometry was made. The results indicate that the resource of primary importance is flat lying bituminous coal of moderate thickness, under moderate cover, and located within the lower 48 states. Resources of secondary importance are the flat lying multiple seams and thin seams (especially those in Appalachia). Steeply dipping coals, abandoned pillars, and exceptionally thick western coals may be important in some regions of subregions, but the limited tonnage available places them in a position of tertiary importance
- …