47 research outputs found

    Pan American interactions of Amazon precipitation, streamflow, and tree growth extremes

    Get PDF
    Rainfall and river levels in the Amazon are associated with significant precipitation anomalies of opposite sign in temperate North and South America, which is the dominant mode of precipitation variability in the Americas that often arises during extremes of the El Niño/Southern Oscillation (ENSO). This co-variability of precipitation extremes across the Americas is imprinted on tree growth and is detected when new tree-ring chronologies from the eastern equatorial Amazon are compared with hundreds of moisture-sensitive tree-ring chronologies in mid-latitude North and South America from 1759 to 2016. Pan-American co-variability exists even though the seasonality of precipitation and tree growth only partially overlaps between the Amazon and mid-latitudes because ENSO forcing of climate can persist for multiple seasons and can orchestrate a coherent response, even where the growing seasons are not fully synchronized. The tree-ring data indicate that the El Niño influence on inter-hemispheric precipitation and tree growth extremes has been strong and stable over the past 258-years, but the La Niña influence has been subject to large multi-decadal changes. These changes have implications for the dynamics and forecasting of hydroclimatic variability over the Americas and are supported by analyses of the available instrumental data and selected climate model simulations.Fil: Stahle, D.W.. University of Arkansas for Medical Sciences; Estados UnidosFil: Torbenson, Max Carl Arne. Ohio State University; Estados UnidosFil: Howard, I. M.. University of Arkansas for Medical Sciences; Estados UnidosFil: Granato Souza, D.. University of Arkansas for Medical Sciences; Estados UnidosFil: Barbosa, A. C.. Universidad Federal de Lavras; BrasilFil: Feng, S.. University of Arkansas for Medical Sciences; Estados UnidosFil: Schöngart, J.. National Institute For Amazon Research; BrasilFil: Lopez Callejas, Lidio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Villalba, Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Villanueva, J.. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias; MéxicoFil: Fernandes, K.. Columbia University; Estados Unido

    Influence of GB virus C on IFN-γ and IL-2 production and CD38 expression in T lymphocytes from chronically HIV-infected and HIV-HCV-co-infected patients

    Get PDF
    This study was designed to assess the effect of GB virus (GBV)-C on the immune response to human immunodeficiency virus (HIV) in chronically HIV-infected and HIV- hepatitis C virus (HCV)-co-infected patients undergoing antiretroviral therapy. A cohort of 159 HIV-seropositive patients, of whom 52 were HCV-co-infected, was included. Epidemiological data were collected and virological and immunological markers, including the production of interferon gamma (IFN-γ) and interleukin (IL)-2 by CD4, CD8 and Tγδ cells and the expression of the activation marker, CD38, were assessed. A total of 65 patients (40.8%) presented markers of GBV-C infection. The presence of GBV-C did not influence HIV and HCV replication or TCD4 and TCD8 cell counts. Immune responses, defined by IFN-γ and IL-2 production and CD38 expression did not differ among the groups. Our results suggest that neither GBV-C viremia nor the presence of E2 antibodies influence HIV and HCV viral replication or CD4 T cell counts in chronically infected patients. Furthermore, GBV-C did not influence cytokine production or CD38-driven immune activation among these patients. Although our results do not exclude a protective effect of GBV-C in early HIV disease, they demonstrate that this effect may not be present in chronically infected patients, who represent the majority of patients in outpatient clinics.Universidade Federal de São Paulo (UNIFESP) Laboratório de Virologia e Imunologia Disciplina de InfectologiaFleury Medicina DiagnósticaUNIFESP, Laboratório de Virologia e Imunologia Disciplina de InfectologiaSciEL

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Tropical tree growth driven by dry-season climate variability

    Get PDF
    Interannual variability in the global land carbon sink is strongly related to variations in tropical temperature and rainfall. This association suggests an important role for moisture-driven fluctuations in tropical vegetation productivity, but empirical evidence to quantify the responsible ecological processes is missing. Such evidence can be obtained from tree-ring data that quantify variability in a major vegetation productivity component: woody biomass growth. Here we compile a pantropical tree-ring network to show that annual woody biomass growth increases primarily with dry-season precipitation and decreases with dry-season maximum temperature. The strength of these dry-season climate responses varies among sites, as reflected in four robust and distinct climate response groups of tropical tree growth derived from clustering. Using cluster and regression analyses, we find that dry-season climate responses are amplified in regions that are drier, hotter and more climatically variable. These amplification patterns suggest that projected global warming will probably aggravate drought-induced declines in annual tropical vegetation productivity. Our study reveals a previously underappreciated role of dry-season climate variability in driving the dynamics of tropical vegetation productivity and consequently in influencing the land carbon sink.We acknowledge financial support to the co-authors provided by Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT 2014-2797) to M.E.F.; Alberta Mennega Stichting to P.G.; BBVA Foundation to H.A.M. and J.J.C.; Belspo BRAIN project: BR/143/A3/HERBAXYLAREDD to H.B.; Confederação da Agricultura e Pecuária do Brasil - CNA to C.F.; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, Brazil (PDSE 15011/13-5 to M.A.P.; 88881.135931/2016-01 to C.F.; 88887.199858/2018-00 to G.A.-P.; Finance Code 001 for all Brazilian collaborators); Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, Brazil (ENV 42 to O.D.; 1009/4785031-2 to G.C.; 311874/2017-7 to J.S.); CONACYT-CB-2016-283134 to J.V.-D.; CONICET to F.A.R.; CUOMO FOUNDATION (IPCC scholarship) to M.M.; Deutsche Forschungsgemeinschaft - DFG (BR 1895/15-1 to A.B.; BR 1895/23-1 to A.B.; BR 1895/29-1 to A.B.; BR 1895/24-1 to M.M.); DGD-RMCA PilotMAB to B.T.; Dirección General de Asuntos del Personal Académico of the UNAM (Mexico) to R.B.; Elsa-Neumann-Scholarship of the Federal State of Berlin to F.S.; EMBRAPA Brazilian Agricultural Research Corporation to C.F.; Equatorian Dirección de Investigación UNL (21-DI-FARNR-2019) to D.P.-C.; São Paulo Research Foundation FAPESP (2009/53951-7 to M.T.-F.; 2012/50457-4 to G.C.; 2018/01847‐0 to P.G.; 2018/24514-7 to J.R.V.A.; 2019/08783-0 to G.M.L.; 2019/27110-7 to C.F.); FAPESP-NERC 18/50080-4 to G.C.; FAPITEC/SE/FUNTEC no. 01/2011 to M.A.P.; Fulbright Fellowship to B.J.E.; German Academic Exchange Service (DAAD) to M.I. and M.R.; German Ministry of Education, Science, Research, and Technology (FRG 0339638) to O.D.; ICRAF through the Forests, Trees, and Agroforestry research programme of the CGIAR to M.M.; Inter-American Institute for Global Change Research (IAI-SGP-CRA 2047) to J.V.-D.; International Foundation for Science (D/5466-1) to M.I.; Lamont Climate Center to B.M.B.; Miquelfonds to P.G.; National Geographic Global Exploration Fund (GEFNE80-13) to I.R.; USA’s National Science Foundation NSF (IBN-9801287 to A.J.L.; GER 9553623 and a postdoctoral fellowship to B.J.E.); NSF P2C2 (AGS-1501321) to A.C.B., D.G.-S. and G.A.-P.; NSF-FAPESP PIRE 2017/50085-3 to M.T.-F., G.C. and G.M.L.; NUFFIC-NICHE programme (HEART project) to B.K., E.M., J.H.S., J.N. and R. Vinya; Peru ‘s CONCYTEC and World Bank (043-2019-FONDECYT-BM-INC.INV.) to J.G.I.; Peru’s Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (FONDECYT-BM-INC.INV 039-2019) to E.J.R.-R. and M.E.F.; Programa Bosques Andinos - HELVETAS Swiss Intercooperation to M.E.F.; Programa Nacional de Becas y Crédito Educativo - PRONABEC to J.G.I.; Schlumberger Foundation Faculty for the Future to J.N.; Sigma Xi to A.J.L.; Smithsonian Tropical Research Institute to R. Alfaro-Sánchez.; Spanish Ministry of Foreign Affairs AECID (11-CAP2-1730) to H.A.M. and J.J.C.; UK NERC grant NE/K01353X/1 to E.G.Peer reviewe
    corecore