723 research outputs found
First-principles study of lattice instabilities in Ba_xSr_(1-x)TiO_3
Using first-principles calculations based on a variational density functional
perturbation theory, we investigate the lattice dynamics of solid solutions of
barium and strontium titanates. Averaging the information available for the
related pure compounds yields results equivalent to those obtained within the
virtual crystal approximation, providing frequencies which are a good
approximation to those computed for a (111) ordered supercell. Using the same
averaging technique we report the evolution of the ferroelectric and
antiferrodistortive instabilities with composition.Comment: 9 pages, 2 figures, Proceedings for Fundamental Physics of
Ferroelectrics, Aspen (CO), Feb. 13-20, 200
Electron localization : band-by-band decomposition, and application to oxides
Using a plane wave pseudopotential approach to density functional theory we
investigate the electron localization length in various oxides. For this
purpose, we first set up a theory of the band-by-band decomposition of this
quantity, more complex than the decomposition of the spontaneous polarization
(a related concept), because of the interband coupling. We show its
interpretation in terms of Wannier functions and clarify the effect of the
pseudopotential approximation. We treat the case of different oxides: BaO,
-PbO, BaTiO and PbTiO. We also investigate the variation of the
localization tensor during the ferroelectric phase transitions of BaTiO as
well as its relationship with the Born effective charges
Ab initio studies of phonon softening and high pressure phase transitions of alpha-quartz SiO2
Density functional perturbation theory calculations of alpha-quartz using
extended norm conserving pseudopotentials have been used to study the elastic
properties and phonon dispersion relations along various high symmetry
directions as a function of bulk, uniaxial and non-hydrostatic pressure. The
computed equation of state, elastic constants and phonon frequencies are found
to be in good agreement with available experimental data. A zone boundary (1/3,
1/3, 0) K-point phonon mode becomes soft for pressures above P=32 GPa. Around
the same pressure, studies of the Born stability criteria reveal that the
structure is mechanically unstable. The phonon and elastic softening are
related to the high pressure phase transitions and amorphization of quartz and
these studies suggest that the mean transition pressure is lowered under
non-hydrostatic conditions. Application of uniaxial pressure, results in a
post-quartz crystalline monoclinic C2 structural transition in the vicinity of
the K-point instability. This structure, intermediate between quartz and
stishovite has two-thirds of the silicon atoms in octahedral coordination while
the remaining silicon atoms remain tetrahedrally coordinated. This novel
monoclinic C2 polymorph of silica, which is found to be metastable under
ambient conditions, is possibly one of the several competing dense forms of
silica containing octahedrally coordinated silicon. The possible role of high
pressure ferroelastic phases in causing pressure induced amorphization in
silica are discussed.Comment: 17 pages, 8 figs., 8 Table
Nonlocality of Kohn-Sham exchange-correlation fields in dielectrics
The theory of the macroscopic field appearing in the Kohn-Sham
exchange-correlation potential for dielectric materials, as introduced by
Gonze, Ghosez and Godby, is reexamined. It is shown that this Kohn-Sham field
cannot be determined from a knowledge of the local state of the material (local
crystal potential, electric field, and polarization) alone. Instead, it has an
intrinsically nonlocal dependence on the global electrostatic configuration.
For example, it vanishes in simple transverse configurations of a polarized
dielectric, but not in longitudinal ones.Comment: 4 pages, two-column style with 2 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#dv_gg
The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table
First-principles calculations in crystalline structures are often performed
with a planewave basis set. To make the number of basis functions tractable two
approximations are usually introduced: core electrons are frozen and the
diverging Coulomb potential near the nucleus is replaced by a smoother
expression. The norm-conserving pseudopotential was the first successful method
to apply these approximations in a fully ab initio way. Later on, more
efficient and more exact approaches were developed based on the ultrasoft and
the projector augmented wave formalisms. These formalisms are however more
complex and developing new features in these frameworks is usually more
difficult than in the norm-conserving framework. Most of the existing tables of
norm- conserving pseudopotentials, generated long ago, do not include the
latest developments, are not systematically tested or are not designed
primarily for high accuracy. In this paper, we present our PseudoDojo framework
for developing and testing full tables of pseudopotentials, and demonstrate it
with a new table generated with the ONCVPSP approach. The PseudoDojo is an open
source project, building on the AbiPy package, for developing and
systematically testing pseudopotentials. At present it contains 7 different
batteries of tests executed with ABINIT, which are performed as a function of
the energy cutoff. The results of these tests are then used to provide hints
for the energy cutoff for actual production calculations. Our final set
contains 141 pseudopotentials split into a standard and a stringent accuracy
table. In total around 70.000 calculations were performed to test the
pseudopotentials. The process of developing the final table led to new insights
into the effects of both the core-valence partitioning and the non-linear core
corrections on the stability, convergence, and transferability of
norm-conserving pseudopotentials. ...Comment: abstract truncated, 17 pages, 25 figures, 8 table
Theory of structural response to macroscopic electric fields in ferroelectric systems
We have developed and implemented a formalism for computing the structural
response of a periodic insulating system to a homogeneous static electric field
within density-functional perturbation theory (DFPT). We consider the
thermodynamic potentials E(R,eta,e) and F(R,eta,e) whose minimization with
respect to the internal structural parameters R and unit cell strain eta yields
the equilibrium structure at fixed electric field e and polarization P,
respectively. First-order expansion of E(R,eta,e) in e leads to a useful
approximation in which R(P) and eta(P) can be obtained by simply minimizing the
zero-field internal energy with respect to structural coordinates subject to
the constraint of a fixed spontaneous polarization P. To facilitate this
minimization, we formulate a modified DFPT scheme such that the computed
derivatives of the polarization are consistent with the discretized form of the
Berry-phase expression. We then describe the application of this approach to
several problems associated with bulk and short-period superlattice structures
of ferroelectric materials such as BaTiO3 and PbTiO3. These include the effects
of compositionally broken inversion symmetry, the equilibrium structure for
high values of polarization, field-induced structural phase transitions, and
the lattice contributions to the linear and the non-linear dielectric
constants.Comment: 19 pages, with 15 postscript figures embedded. Uses REVTEX4 and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/sai_pol/index.htm
An efficient k.p method for calculation of total energy and electronic density of states
An efficient method for calculating the electronic structure in large systems
with a fully converged BZ sampling is presented. The method is based on a
k.p-like approximation developed in the framework of the density functional
perturbation theory. The reliability and efficiency of the method are
demostrated in test calculations on Ar and Si supercells
Non-linear optical susceptibilities, Raman efficiencies and electrooptic tensors from first-principles density functional perturbation theory
The non-linear response of infinite periodic solids to homogenous electric
fields and collective atomic displacements is discussed in the framework of
density functional perturbation theory. The approach is based on the 2n + 1
theorem applied to an electric-field-dependent energy functional. We report the
expressions for the calculation of the non-linear optical susceptibilities,
Raman scattering efficiencies and electrooptic coefficients. Different
formulations of third-order energy derivatives are examined and their
convergence with respect to the k-point sampling is discussed. We apply our
method to a few simple cases and compare our results to those obtained with
distinct techniques. Finally, we discuss the effect of a scissors correction on
the EO coefficients and non-linear optical susceptibilities
Density-functional theory of polar insulators
We examine the density-functional theory of macroscopic insulators, obtained in the large-cluster limit or under periodic boundary conditions. For polar crystals, we find that the two procedures are not equivalent. In a large-cluster case, the exact exchange-correlation potential acquires a homogeneous ``electric field'' which is absent from the usual local approximations, and the Kohn-Sham electronic system becomes metallic. With periodic boundary conditions, such a field is forbidden, and the polarization deduced from Kohn-Sham wavefunctions is incorrect even if the exact functional is used
Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides
Motivated by the triumph and limitation of graphene for electronic
applications, atomically thin layers of group VI transition metal
dichalcogenides are attracting extensive interest as a class of graphene-like
semiconductors with a desired band-gap in the visible frequency range. The
monolayers feature a valence band spin splitting with opposite sign in the two
valleys located at corners of 1st Brillouin zone. This spin-valley coupling,
particularly pronounced in tungsten dichalcogenides, can benefit potential
spintronics and valleytronics with the important consequences of spin-valley
interplay and the suppression of spin and valley relaxations. Here we report
the first optical studies of WS2 and WSe2 monolayers and multilayers. The
efficiency of second harmonic generation shows a dramatic even-odd oscillation
with the number of layers, consistent with the presence (absence) of inversion
symmetry in even-layer (odd-layer). Photoluminescence (PL) measurements show
the crossover from an indirect band gap semiconductor at mutilayers to a
direct-gap one at monolayers. The PL spectra and first-principle calculations
consistently reveal a spin-valley coupling of 0.4 eV which suppresses
interlayer hopping and manifests as a thickness independent splitting pattern
at valence band edge near K points. This giant spin-valley coupling, together
with the valley dependent physical properties, may lead to rich possibilities
for manipulating spin and valley degrees of freedom in these atomically thin 2D
materials
- …
