349 research outputs found
Deglaciation constraints in the Parâng Mountains, Southern Romania, using surface exposure dating
Cosmogenic nuclide surface exposure ages have been widely used to constrain glacial chronologies in the European regions. This paper brings new evidence that the Romanian Carpathians sheltered mountain glaciers in their upper valleys and cirques until the end of the last glaciation. Twenty-four 10Be surface exposure ages were obtained from boulders on moraine crests in the central area of the Parâng Mountains, Southern Carpathians. Exposure ages were used to constrain the timing of the deglaciation events during the Late Glacial. The lowest boulders yielded an age of 13.0 ± 1.1 (1766 m) and final deglaciation occurred at 10.2 ± 0.9 ka (2055 m). Timing of the Late Glacial events and complete deglaciation reported in this study are consistent with, and confirm, previously reported ages of deglaciation within the Carpathian and surrounding European region
Correlation experiments in nonlinear quantum mechanics
We show how one can compute multiple-time multi-particle correlation
functions in nonlinear quantum mechanics in a way which guarantees locality of
the formalism.Comment: Section on causally related corelation experiments is added (Russian
roulette with a cheating player as an analogue of nonlinear EPR problem); to
be published in Phys. Lett. A 301 (2002) 139-15
Quantum Error Correcting Codes Using Qudit Graph States
Graph states are generalized from qubits to collections of qudits of
arbitrary dimension , and simple graphical methods are used to construct
both additive and nonadditive quantum error correcting codes. Codes of distance
2 saturating the quantum Singleton bound for arbitrarily large and are
constructed using simple graphs, except when is odd and is even.
Computer searches have produced a number of codes with distances 3 and 4, some
previously known and some new. The concept of a stabilizer is extended to
general , and shown to provide a dual representation of an additive graph
code.Comment: Version 4 is almost exactly the same as the published version in
Phys. Rev.
Dielectric Behavior of Nonspherical Cell Suspensions
Recent experiments revealed that the dielectric dispersion spectrum of
fission yeast cells in a suspension was mainly composed of two sub-dispersions.
The low-frequency sub-dispersion depended on the cell length, whereas the
high-frequency one was independent of it. The cell shape effect was
qualitatively simulated by an ellipsoidal cell model. However, the comparison
between theory and experiment was far from being satisfactory. In an attempt to
close up the gap between theory and experiment, we considered the more
realistic cells of spherocylinders, i.e., circular cylinders with two
hemispherical caps at both ends. We have formulated a Green function formalism
for calculating the spectral representation of cells of finite length. The
Green function can be reduced because of the azimuthal symmetry of the cell.
This simplification enables us to calculate the dispersion spectrum and hence
access the effect of cell structure on the dielectric behavior of cell
suspensions.Comment: Preliminary results have been reported in the 2001 March Meeting of
the American Physical Society. Accepted for publications in J. Phys.:
Condens. Matte
Suppression of decoherence in quantum registers by entanglement with a nonequilibrium environment
It is shown that a nonequilibrium environment can be instrumental in
suppressing decoherence between distinct decoherence free subspaces in quantum
registers. The effect is found in the framework of exact coherent-product
solutions for model registers decohering in a bath of degenerate harmonic
modes, through couplings linear in bath coordinates. These solutions represent
a natural nonequilibrium extension of the standard solution for a decoupled
initial register state and a thermal environment. Under appropriate conditions,
the corresponding reduced register distribution can propagate in an unperturbed
manner, even in the presence of entanglement between states belonging to
distinct decoherence free subspaces, and despite persistent bath entanglement.
As a byproduct, we also obtain a refined picture of coherence dynamics under
bang-bang decoherence control. In particular, it is shown that each
radio-frequency pulse in a typical bang-bang cycle induces a revival of
coherence, and that these revivals are exploited in a natural way by the
time-symmetrized version of the bang-bang protocol.Comment: RevTex3, 26 pgs., 2 figs.. This seriously expanded version accepted
by Phys.Rev.A. No fundamentally new content, but rewritten introduction to
problem, self-contained introduction of thermal coherent-product states in
standard operator formalism, examples of zero-temperature decoherence free
Davydov states. Also fixed a typo that propagated into an interpretational
blunder in old Sec.3 [fortunately of no consequence
A Variational Procedure for Time-Dependent Processes
A simple variational Lagrangian is proposed for the time development of an
arbitrary density matrix, employing the "factorization" of the density. Only
the "kinetic energy" appears in the Lagrangian. The formalism applies to pure
and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport
theory, etc. It recaptures the Least Dissipation Function condition of
Rayleigh-Onsager {\bf and in practical applications is flexible}. The
variational proposal is tested on a two level system interacting that is
subject, in one instance, to an interaction with a single oscillator and, in
another, that evolves in a dissipative mode.Comment: 25 pages, 4 figure
- …