957 research outputs found

    Numerical study of the disordered Poland-Scheraga model of DNA denaturation

    Full text link
    We numerically study the binary disordered Poland-Scheraga model of DNA denaturation, in the regime where the pure model displays a first order transition (loop exponent c=2.15>2c=2.15>2). We use a Fixman-Freire scheme for the entropy of loops and consider chain length up to N=4105N=4 \cdot 10^5, with averages over 10410^4 samples. We present in parallel the results of various observables for two boundary conditions, namely bound-bound (bb) and bound-unbound (bu), because they present very different finite-size behaviors, both in the pure case and in the disordered case. Our main conclusion is that the transition remains first order in the disordered case: in the (bu) case, the disorder averaged energy and contact densities present crossings for different values of NN without rescaling. In addition, we obtain that these disorder averaged observables do not satisfy finite size scaling, as a consequence of strong sample to sample fluctuations of the pseudo-critical temperature. For a given sample, we propose a procedure to identify its pseudo-critical temperature, and show that this sample then obeys first order transition finite size scaling behavior. Finally, we obtain that the disorder averaged critical loop distribution is still governed by P(l)1/lcP(l) \sim 1/l^c in the regime lNl \ll N, as in the pure case.Comment: 12 pages, 13 figures. Revised versio

    Delocalization transition of the selective interface model: distribution of pseudo-critical temperatures

    Full text link
    According to recent progress in the finite size scaling theory of critical disordered systems, the nature of the phase transition is reflected in the distribution of pseudo-critical temperatures Tc(i,L)T_c(i,L) over the ensemble of samples (i)(i) of size LL. In this paper, we apply this analysis to the delocalization transition of an heteropolymeric chain at a selective fluid-fluid interface. The width ΔTc(L)\Delta T_c(L) and the shift [Tc()Tcav(L)][T_c(\infty)-T_c^{av}(L)] are found to decay with the same exponent L1/νRL^{-1/\nu_{R}}, where 1/νR0.261/\nu_{R} \sim 0.26. The distribution of pseudo-critical temperatures Tc(i,L)T_c(i,L) is clearly asymmetric, and is well fitted by a generalized Gumbel distribution of parameter m3m \sim 3. We also consider the free energy distribution, which can also be fitted by a generalized Gumbel distribution with a temperature dependent parameter, of order m0.7m \sim 0.7 in the critical region. Finally, the disorder averaged number of contacts with the interface scales at TcT_c like LρL^{\rho} with ρ0.261/νR\rho \sim 0.26 \sim 1/\nu_R .Comment: 9 pages,6 figure

    Effects of tidal-forcing variations on tidal properties along a narrow convergent estuary

    Get PDF
    A 1D analytical framework is implemented in a narrow convergent estuary that is 78 km in length (the Guadiana, Southern Iberia) to evaluate the tidal dynamics along the channel, including the effects of neap-spring amplitude variations at the mouth. The close match between the observations (damping from the mouth to ∼ 30 km, shoaling upstream) and outputs from semi-closed channel solutions indicates that the M2 tide is reflected at the estuary head. The model is used to determine the contribution of reflection to the dynamics of the propagating wave. This contribution is mainly confined to the upper one third of the estuary. The relatively constant mean wave height along the channel (< 10% variations) partly results from reflection effects that also modify significantly the wave celerity and the phase difference between tidal velocity and elevation (contradicting the definition of an “ideal” estuary). Furthermore, from the mouth to ∼ 50 km, the variable friction experienced by the incident wave at neap and spring tides produces wave shoaling and damping, respectively. As a result, the wave celerity is largest at neap tide along this lower reach, although the mean water level is highest in spring. Overall, the presented analytical framework is useful for describing the main tidal properties along estuaries considering various forcings (amplitude, period) at the estuary mouth and the proposed method could be applicable to other estuaries with small tidal amplitude to depth ratio and negligible river discharge.info:eu-repo/semantics/publishedVersio

    Statistics of first-passage times in disordered systems using backward master equations and their exact renormalization rules

    Full text link
    We consider the non-equilibrium dynamics of disordered systems as defined by a master equation involving transition rates between configurations (detailed balance is not assumed). To compute the important dynamical time scales in finite-size systems without simulating the actual time evolution which can be extremely slow, we propose to focus on first-passage times that satisfy 'backward master equations'. Upon the iterative elimination of configurations, we obtain the exact renormalization rules that can be followed numerically. To test this approach, we study the statistics of some first-passage times for two disordered models : (i) for the random walk in a two-dimensional self-affine random potential of Hurst exponent HH, we focus on the first exit time from a square of size L×LL \times L if one starts at the square center. (ii) for the dynamics of the ferromagnetic Sherrington-Kirkpatrick model of NN spins, we consider the first passage time tft_f to zero-magnetization when starting from a fully magnetized configuration. Besides the expected linear growth of the averaged barrier lntfˉN\bar{\ln t_{f}} \sim N, we find that the rescaled distribution of the barrier (lntf)(\ln t_{f}) decays as euηe^{- u^{\eta}} for large uu with a tail exponent of order η1.72\eta \simeq 1.72. This value can be simply interpreted in terms of rare events if the sample-to-sample fluctuation exponent for the barrier is ψwidth=1/3\psi_{width}=1/3.Comment: 8 pages, 4 figure

    THERMODYNAMICS OF A BROWNIAN BRIDGE POLYMER MODEL IN A RANDOM ENVIRONMENT

    Full text link
    We consider a directed random walk making either 0 or +1+1 moves and a Brownian bridge, independent of the walk, conditioned to arrive at point bb on time TT. The Hamiltonian is defined as the sum of the square of increments of the bridge between the moments of jump of the random walk and interpreted as an energy function over the bridge connfiguration; the random walk acts as the random environment. This model provides a continuum version of a model with some relevance to protein conformation. The thermodynamic limit of the specific free energy is shown to exist and to be self-averaging, i.e. it is equal to a trivial --- explicitly computed --- random variable. An estimate of the asymptotic behaviour of the ground state energy is also obtained.Comment: 20 pages, uuencoded postscrip

    A simple model for DNA denaturation

    Full text link
    Following Poland and Scheraga, we consider a simplified model for the denaturation transition of DNA. The two strands are modeled as interacting polymer chains. The attractive interactions, which mimic the pairing between the four bases, are reduced to a single short range binding term. Furthermore, base-pair misalignments are forbidden, implying that this binding term exists only for corresponding (same curvilinear abscissae) monomers of the two chains. We take into account the excluded volume repulsion between monomers of the two chains, but neglect intra-chain repulsion. We find that the excluded volume term generates an effective repulsive interaction between the chains, which decays as 1/rd21/r^{d-2}. Due to this long-range repulsion between the chains, the denaturation transition is first order in any dimension, in agreement with previous studies.Comment: 10 page

    On the multifractal statistics of the local order parameter at random critical points : application to wetting transitions with disorder

    Full text link
    Disordered systems present multifractal properties at criticality. In particular, as discovered by Ludwig (A.W.W. Ludwig, Nucl. Phys. B 330, 639 (1990)) on the case of diluted two-dimensional Potts model, the moments ρq(r)ˉ\bar{\rho^q(r)} of the local order parameter ρ(r)\rho(r) scale with a set x(q)x(q) of non-trivial exponents x(q)qx(1)x(q) \neq q x(1). In this paper, we revisit these ideas to incorporate more recent findings: (i) whenever a multifractal measure w(r)w(r) normalized over space rw(r)=1 \sum_r w(r)=1 occurs in a random system, it is crucial to distinguish between the typical values and the disorder averaged values of the generalized moments Yq=rwq(r)Y_q =\sum_r w^q(r), since they may scale with different generalized dimensions D(q)D(q) and D~(q)\tilde D(q) (ii) as discovered by Wiseman and Domany (S. Wiseman and E. Domany, Phys Rev E {\bf 52}, 3469 (1995)), the presence of an infinite correlation length induces a lack of self-averaging at critical points for thermodynamic observables, in particular for the order parameter. After this general discussion valid for any random critical point, we apply these ideas to random polymer models that can be studied numerically for large sizes and good statistics over the samples. We study the bidimensional wetting or the Poland-Scheraga DNA model with loop exponent c=1.5c=1.5 (marginal disorder) and c=1.75c=1.75 (relevant disorder). Finally, we argue that the presence of finite Griffiths ordered clusters at criticality determines the asymptotic value x(q)=dx(q \to \infty) =d and the minimal value αmin=D(q)=dx(1) \alpha_{min}=D(q \to \infty)=d-x(1) of the typical multifractal spectrum f(α)f(\alpha).Comment: 17 pages, 20 figure

    New evidence for super-roughening in crystalline surfaces with disordered substrate

    Full text link
    We study the behavior of the Binder cumulant related to long distance correlation functions of the discrete Gaussian model of disordered substrate crystalline surfaces. We exhibit numerical evidence that the non-Gaussian behavior in the low-TT region persists on large length scales, in agreement with the broken phase being super-rough.Comment: 10 pages and 4 figures, available at http://chimera.roma1.infn.it/index_papers_complex.html . We have extended the RG discussion and minor changes in the tex

    Adsorption of polymers on a fluctuating surface

    Full text link
    We study the adsorption of polymer chains on a fluctuating surface. Physical examples are provided by polymer adsorption at the rough interface between two non-miscible liquids, or on a membrane. In a mean-field approach, we find that the self--avoiding chains undergo an adsorption transition, accompanied by a stiffening of the fluctuating surface. In particular, adsorption of polymers on a membrane induces a surface tension and leads to a strong suppression of roughness.Comment: REVTEX, 9 pages, no figure

    Frustrated magnets in three dimensions: a nonperturbative approach

    Full text link
    Frustrated magnets exhibit unusual critical behaviors: they display scaling laws accompanied by nonuniversal critical exponents. This suggests that these systems generically undergo very weak first order phase transitions. Moreover, the different perturbative approaches used to investigate them are in conflict and fail to correctly reproduce their behavior. Using a nonperturbative approach we explain the mismatch between the different perturbative approaches and account for the nonuniversal scaling observed.Comment: 7 pages, 1 figure. IOP style files included. To appear in Journal of Physics: Condensed Matter. Proceedings of the conference HFM 2003, Grenoble, Franc
    corecore