1,229 research outputs found

    A first unbiased global NLO determination of parton distributions and their uncertainties

    Get PDF
    We present a determination of the parton distributions of the nucleon from a global set of hard scattering data using the NNPDF methodology: NNPDF2.0. Experimental data include deep-inelastic scattering with the combined HERA-I dataset, fixed target Drell-Yan production, collider weak boson production and inclusive jet production. Next-to-leading order QCD is used throughout without resorting to K-factors. We present and utilize an improved fast algorithm for the solution of evolution equations and the computation of general hadronic processes. We introduce improved techniques for the training of the neural networks which are used as parton parametrization, and we use a novel approach for the proper treatment of normalization uncertainties. We assess quantitatively the impact of individual datasets on PDFs. We find very good consistency of all datasets with each other and with NLO QCD, with no evidence of tension between datasets. Some PDF combinations relevant for LHC observables turn out to be determined rather more accurately than in any other parton fit.Comment: 86 pages, 41 figures. PDF sets available from http://sophia.ecm.ub.es/nnpdf/nnpdf_pdfsets.htm and from LHAPDF. Final version to be published in Nucl. Phys. B. Various typos corrected and small clarifications added, fig. 4 added, extended discussion of data consistency especially in sect 5.1 and 5.

    Granular packings of elongated faceted particles deposited under gravity

    Get PDF
    We report experimental and theoretical results of the effect that particle shape has on the packing properties of granular materials. We have systematically measured the particle angular distribution, the cluster size distribution and the stress profiles of ensembles of faceted elongated particles deposited in a bidimensional box. Stress transmission through this granular system has been numerically simulated using a two-dimensional model of irregular particles. For grains of maximum symmetry (squares), the stress propagation localizes and forms chain-like forces analogous to those observed for granular materials composed of spheres. For thick layers of grains, a pressure saturation is observed for deposit depths beyond a characteristic length. This scenario correlates with packing morphology and can be understood in terms of stochastic models of aggregation and random multiplicative processes. As grains elongate and lose their symmetry, stress propagation is strongly affected. Lateral force transmission becomes less favored than vertical transfer, and hence, an increase in the pressure develops with depth, hindering force saturation

    Association between the plasma/whole blood lead ratio and history of spontaneous abortion: a nested cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood lead has been associated with an elevated risk of miscarriage. The plasmatic fraction of lead represents the toxicologically active fraction of lead. Women with a tendency to have a higher plasma/whole blood Pb ratio could tend towards an elevated risk of miscarriage due to a higher plasma Pb for a given whole blood Pb and would consequently have a history of spontaneous abortion.</p> <p>Methods</p> <p>We studied 207 pregnant Mexico City residents during the 1<sup>st </sup>trimester of pregnancy, originally recruited for two cohorts between 1997 and 2004. Criteria for inclusion in this study were having had at least one previous pregnancy, and having valid plasma and blood Pb measurements. Pb was measured in whole blood and plasma by inductively coupled plasma mass spectrometry using ultra-clean techniques. History of miscarriage in previous pregnancies was obtained by interview. The incidence rate of spontaneous abortion was defined as the proportion of previous pregnancies that resulted in miscarriage. Data were analyzed by means of Poisson regression models featuring the incidence rate of spontaneous abortion as the outcome and continuous or categorized plasma/blood Pb ratios as predictor variables. All models were adjusted for age and schooling. Additionally, logistic regression models featuring inclusion in the study sample as the outcome were fitted to assess potential selection bias.</p> <p>Results</p> <p>The mean number of miscarriages was 0.42 (range 0 to 4); mean Pb concentrations were 62.4 and 0.14 ÎŒg/L in whole blood and plasma respectively. Mean plasma/blood Pb ratio was 0.22%. We estimated that a 0.1% increment in the plasma/blood Pb ratio lead was associated to a 12% greater incidence of spontaneous abortion (p = 0.02). Women in the upper tertile of the plasma/blood Pb ratio had twice the incidence rate of those in the lower tertile (p = 0.02). Conditional on recruitment cohort, inclusion in the study sample was unrelated to observable characteristics such as number of abortions, number of pregnancies, blood Pb levels, age schooling, weight and height.</p> <p>Conclusion</p> <p>Women with a large plasma/whole blood Pb ratio may be at higher risk of miscarriage, which could be due to a greater availability of placental barrier-crossing Pb.</p

    Granular Solid Hydrodynamics

    Get PDF
    Granular elasticity, an elasticity theory useful for calculating static stress distribution in granular media, is generalized to the dynamic case by including the plastic contribution of the strain. A complete hydrodynamic theory is derived based on the hypothesis that granular medium turns transiently elastic when deformed. This theory includes both the true and the granular temperatures, and employs a free energy expression that encapsulates a full jamming phase diagram, in the space spanned by pressure, shear stress, density and granular temperature. For the special case of stationary granular temperatures, the derived hydrodynamic theory reduces to {\em hypoplasticity}, a state-of-the-art engineering model.Comment: 42 pages 3 fi

    FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease

    Get PDF
    Mechanisms driving tumor progression from less aggressive subtypes to more aggressive states represent key targets for therapy. We identified a subset of luminal A primary breast tumors that give rise to HER2-enriched (HER2E) subtype metastases, but remain clinically HER2 negative (cHER2-). By testing the unique genetic and transcriptomic features of these cases, we developed the hypothesis that FGFR4 likely participates in this subtype switching. To evaluate this, we developed 2 FGFR4 genomic signatures using a patient-derived xenograft (PDX) model treated with an FGFR4 inhibitor, which inhibited PDX growth in vivo. Bulk tumor gene expression analysis and single-cell RNA sequencing demonstrated that the inhibition of FGFR4 signaling caused molecular switching. In the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) breast cancer cohort, FGFR4-induced and FGFR4-repressed signatures each predicted overall survival. Additionally, the FGFR4-induced signature was an independent prognostic factor beyond subtype and stage. Supervised analysis of 77 primary tumors with paired metastases revealed that the FGFR4-induced signature was significantly higher in luminal/ER+ tumor metastases compared with their primaries. Finally, multivariate analysis demonstrated that the FGFR4- induced signature also predicted site-specific metastasis for lung, liver, and brain, but not for bone or lymph nodes. These data identify a link between FGFR4-regulated genes and metastasis, suggesting treatment options for FGFR4-positive patients, whose high expression is not caused by mutation or amplification

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201
    • 

    corecore