497 research outputs found
Toward a Psychology of Surrogate Decision Making
In everyday life, many of the decisions that we make are made on behalf of other people. A growing body of research suggests that we often, but not always, make different decisions on behalf of other people than the other person would choose. This is problematic in the practical case of legally designated surrogate decision makers, who may not meet the substituted judgment standard. Here, we review evidence from studies of surrogate decision making and examine the extent to which surrogate decision making accurately predicts the recipient’s wishes, or if it is an incomplete or distorted application of the surrogate’s own decision-making processes. We find no existing domain-general model of surrogate decision making. We propose a framework by which surrogate decision making can be assessed and a novel domain-general theory as a unifying explanatory concept for surrogate decisions
Supporting dynamic change detection: using the right tool for the task
Detecting task-relevant changes in a visual scene is necessary for successfully monitoring and managing dynamic command and control situations. Change blindness—the failure to notice visual changes—is an important source of human error. Change History EXplicit (CHEX) is a tool developed to aid change detection and maintain situation awareness; and in the current study we test the generality of its ability to facilitate the detection of changes when this subtask is embedded within a broader dynamic decision-making task. A multitasking air-warfare simulation required participants to perform radar-based subtasks, for which change detection was a necessary aspect of the higher-order goal of protecting one’s own ship. In this task, however, CHEX rendered the operator even more vulnerable to attentional failures in change detection and increased perceived workload. Such support was only effective when participants performed a change detection task without concurrent subtasks. Results are interpreted in terms of the NSEEV model of attention behavior (Steelman, McCarley, & Wickens, Hum. Factors 53:142–153, 2011; J. Exp. Psychol. Appl. 19:403–419, 2013), and suggest that decision aids for use in multitasking contexts must be designed to fit within the available workload capacity of the user so that they may truly augment cognition
Brain Changes in Long-Term Zen Meditators Using Proton Magnetic Resonance Spectroscopy and Diffusion Tensor Imaging: A Controlled Study
Introduction: This work aimed to determine whether 1H magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are correlated with years of meditation and psychological variables in long-term Zen meditators compared to healthy non-meditator controls. Materials and Methods: Design. Controlled, cross-sectional study. Sample. Meditators were recruited from a Zen Buddhist monastery. The control group was recruited from hospital staff. Meditators were administered questionnaires on anxiety, depression, cognitive impairment and mindfulness. 1H-MRS (1.5 T) of the brain was carried out by exploring four areas: both thalami, both hippocampi, the posterior superior parietal lobule (PSPL) and posterior cingulate gyrus. Predefined areas of the brain were measured for diffusivity (ADC) and fractional anisotropy (FA) by MR-DTI. Results: Myo-inositol (mI) was increased in the posterior cingulate gyrus and Glutamate (Glu), N-acetyl-aspartate (NAA) and N-acetyl-aspartate/Creatine (NAA/Cr) was reduced in the left thalamus in meditators. We found a significant positive correlation between mI in the posterior cingulate and years of meditation (r = 0.518; p = .019). We also found significant negative correlations between Glu (r =20.452; p = .045), NAA (r =20.617; p = .003) and NAA/Cr (r =20.448; P = .047) in the left thalamus and years of meditation. Meditators showed a lower Apparent Diffusion Coefficient (ADC) in the left posterior parietal white matter than did controls, and the ADC was negatively correlated with years of meditation (r =20.4850, p = .0066). Conclusions: The results are consistent with the view that mI, Glu and NAA are the most important altered metabolites. This study provides evidence of subtle abnormalities in neuronal function in regions of the white matter in meditators
The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism
Although multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E-09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E-23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E-04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions
Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesOver the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) <1.15).We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls).We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10(-6)). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23.This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental-related genes such as EXT1, ASTN2, MACROD2, and HDAC4.National Institutes of Mental Health (NIMH, USA)
ACE Network
Autism Genetic Resource Exchange (AGRE) is a program of Autism Speaks (USA)
The Autism Genome Project (AGP) from Autism Speaks (USA)
Canadian Institutes of Health Research (CIHR), Genome Canada
Health Research Board (Ireland)
Hilibrand Foundation (USA)
Medical Research Council (UK)
National Institutes of Health (USA)
Ontario Genomics Institute
University of Toronto McLaughlin Centre
Simons Foundation
Johns Hopkins
Autism Consortium of Boston
NLM Family foundation
National Institute of Health grants
National Health Medical Research Council
Scottish Rite
Spunk Fund, Inc.
Rebecca and Solomon Baker Fund
APEX Foundation
National Alliance for Research in Schizophrenia and Affective Disorders (NARSAD)
endowment fund of the Nancy Pritzker Laboratory (Stanford)
Autism Society of America
Janet M. Grace Pervasive Developmental Disorders Fund
The Lundbeck Foundation
universities and university hospitals of Aarhus and Copenhagen
Stanley Foundation
Centers for Disease Control and Prevention (CDC)
Netherlands Scientific Organization
Dutch Brain Foundation
VU University Amsterdam
Trinity Centre for High Performance Computing through Science Foundation Ireland
Autism Genome Project (AGP) from Autism Speak
Context specificity of post-error and post-conflict cognitive control adjustments
There has been accumulating evidence that cognitive control can be adaptively regulated by monitoring for processing conflict as an index of online control demands. However, it is not yet known whether top-down control mechanisms respond to processing conflict in a manner specific to the operative task context or confer a more generalized benefit. While previous studies have examined the taskset-specificity of conflict adaptation effects, yielding inconsistent results, controlrelated performance adjustments following errors have been largely overlooked. This gap in the literature underscores recent debate as to whether post-error performance represents a strategic, control-mediated mechanism or a nonstrategic consequence of attentional orienting. In the present study, evidence of generalized control following both high conflict correct trials and errors was explored in a task-switching paradigm. Conflict adaptation effects were not found to generalize across tasksets, despite a shared response set. In contrast, post-error slowing effects were found to extend to the inactive taskset and were predictive of enhanced post-error accuracy. In addition, post-error performance adjustments were found to persist for several trials and across multiple task switches, a finding inconsistent with attentional orienting accounts of post-error slowing. These findings indicate that error-related control adjustments confer a generalized performance benefit and suggest dissociable mechanisms of post-conflict and post-error control. © 2014 Forster, Cho
Reconstructing Native American Population History
The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved1–5. One contentious issue is whether the settlement occurred via a single6–8 or multiple streams of migration from Siberia9–15. The pattern of dispersals within the Americas is also poorly understood. To address these questions at higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. We show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call “First American”. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan-speakers on both sides of the Panama Isthmus, who have ancestry from both North and South America
Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders
Autism spectrum disorder (ASD) risk is influenced by common polygenic and de novo variation. We aimed to clarify the influence of polygenic risk for ASD and to identify subgroups of ASD cases, including those with strongly acting de novo variants, in which polygenic risk is relevant. Using a novel approach called the polygenic transmission disequilibrium test and data from 6,454 families with a child with ASD, we show that polygenic risk for ASD, schizophrenia, and greater educational attainment is over-transmitted to children with ASD. These findings hold independent of proband IQ. We find that polygenic variation contributes additively to risk in ASD cases who carry a strongly acting de novo variant. Lastly, we show that elements of polygenic risk are independent and differ in their relationship with phenotype. These results confirm that the genetic influences on ASD are additive and suggest that they create risk through at least partially distinct etiologic pathways
- …
