3,414 research outputs found

    HCOOCH3 as a probe of temperature and structure of Orion-KL

    Full text link
    We studied the O-bearing molecule HCOOCH3 to characterize the physical conditions of the different molecular source components in Orion-KL. We identify 28 methyl formate emission peaks throughout the 50" field of observations. The two strongest peaks are in the Compact Ridge (MF1) and in the SouthWest of the Hot Core (MF2). Spectral confusion is still prevailing as half of the expected transitions are blended over the region. Assuming that the transitions are thermalized, we derive the temperature at the five main emission peaks. At the MF1 position we find a temperature of 80K in a 1.8"x0.8" beam size and 120K on a larger scale (3.6" x2.2"), suggesting an external source of heating, whereas the temperature is about 130K at the MF2 position on both scales. Transitions of HCOOCH3 in vt=1 are detected as well and the good agreement of the positions on the rotational diagrams between the vt=0 and the vt=1 transitions suggests a similar temperature. The velocity of the gas is between 7.5 and 8.0km/s depending on the positions and column density peaks vary from 1.6x10^16 to 1.6x10^17cm^-2. A second velocity component is observed around 9-10 km/s in a North-South structure stretching from the Compact Ridge up to the BN object; this component is warmer at the MF1 peak. The two other C2H4O2 isomers are not detected and the derived upper limit for the column density is <3x10^14cm^-2 for glycolaldehyde and <2x10^15cm^-2 for acetic acid. From the 223GHz continuum map, we identify several dust clumps with associated gas masses in the range 0.8 to 5.8Msun. Assuming that the HCOOCH3 is spatially distributed as the dust, we find relative abundances of HCOOCH3 in the range <0.1x10^-8 to 5.2x10^-8. We suggest a relation between the methyl formate distribution and shocks as traced by 2.12 mum H2 emission.Comment: Accepted for publication in A&

    Wall effects on pressure fluctuations in turbulent channel flow

    Full text link
    The purpose of the present paper is to study the influence of wall-echo on pressure fluctuations pp', and on statistical correlations containing pp', {\em viz} redistribution ϕij\phi_{ij}, pressure diffusion dij(p)d_{ij}^{(p)}, and velocity/pressure-gradient Πij\Pi_{ij}. We extend the usual analysis of turbulent correlations containing pressure fluctuations in wall-bounded \tsc{dns} computations [Kim J.: {\em J. Fluid Mech.} {\bf 205} (1989) 421--451], separating pp' not only into rapid p(r)p_{(\mathrm{r})}' and slow p(s)p_{(\mathrm{s})}' parts [Chou P.Y.: {\em Quart. Appl. Math.} {\bf 3} (1945) 38--54], but further into volume (p(r;V)p'_{(\mathrm{r};\mathfrak{V})} and p(s;V)p'_{(\mathrm{s};\mathfrak{V})}) and surface (wall-echo; p(r;w)p'_{(\mathrm{r};w)} and p(s;w)p'_{(\mathrm{s};w)}) terms. An algorithm, based on a Green's function approach, is developed to compute the above splittings for various correlations containing pressure fluctuations (redistribution, pressure diffusion, velocity/pressure-gradient), in fully developed turbulent plane channel flow. This exact analysis confirms previous results based on a method-of-images approximation [Manceau R., Wang M., Laurence D.: {\em J. Fluid Mech.} {\bf 438} (2001) 307--338] showing that, at the wall, p(V)p'_{(\mathfrak{V})} and p(w)p'_{(w)} are usually of the same sign and approximately equal. The above results are then used to study the contribution of each mechanism on the pressure correlations in low Reynolds-number plane channel flow, and to discuss standard second-moment-closure modelling practices

    Dissipative Structures in Supersonic Turbulence

    Full text link
    We show that density-weighted moments of the dissipation rate, ϵl\epsilon_l, averaged over a scale ll, in supersonic turbulence can be successfully explained by the She and L\'ev\^eque model [Phys. Rev. Lett. {\bf 72}, 336 (1994)]. A general method is developed to measure the two parameters of the model, γ\gamma and dd, based directly on their physical interpretations as the scaling exponent of the dissipation rate in the most intermittent structures (γ\gamma) and the dimension of the structures (dd). We find that the best-fit parameters (γ=0.71\gamma=0.71 and d=1.90d=1.90) derived from the ϵl\epsilon_l scalings in a simulation of supersonic turbulence at Mach 6 agree with their direct measurements, confirming the validity of the model in supersonic turbulence.Comment: 4 pages, 3 figures, accepted by Phys. Rev. Let

    Application of large area SiPMs for the readout of a plastic scintillator based timing detector

    Full text link
    In this study an array of eight 6 mm x 6 mm area SiPMs was coupled to the end of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm x 6 cm x 1 cm and 120 cm x 11 cm x 2.5 cm have been studied. An 8-channel SiPM anode readout ASIC (MUSIC R1) based on a novel low input impedance current conveyor has been used to read out and amplify SiPMs independently and sum the signals at the end. Prospects for applications in large-scale particle physics detectors with timing resolution below 100 ps are provided in light of the results

    Application of large area SiPMs for the readout of a plastic scintillator based timing detector

    Full text link
    In this study an array of eight 6 mm x 6 mm area SiPMs was coupled to the end of a long plastic scintillator counter which was exposed to a 2.5 GeV/c muon beam at the CERN PS. Timing characteristics of bars with dimensions 150 cm x 6 cm x 1 cm and 120 cm x 11 cm x 2.5 cm have been studied. An 8-channel SiPM anode readout ASIC (MUSIC R1) based on a novel low input impedance current conveyor has been used to read out and amplify SiPMs independently and sum the signals at the end. Prospects for applications in large-scale particle physics detectors with timing resolution below 100 ps are provided in light of the results

    Beam test results of 3D fine-grained scintillator detector prototype for a T2K ND280 neutrino active target

    Full text link
    An upgrade of the long baseline neutrino experiment T2K near detector ND280 is currently being developed with the goal to reduce systematic uncertainties in the prediction of number of events at the far detector Super-Kamiokande. The upgrade program includes the design and construction of a new highly granular fully active scintillator detector with 3D WLS fiber readout as a neutrino target. The detector of about 200×180×60 cm3200\times 180\times 60~cm^3 in size and a mass of \sim2.2~tons will be assembled from about 2×1062\times10^6 plastic scintillator cubes of 1×1×1 cm31\times1\times1~cm^3. Each cube is read out by three orthogonal Kuraray Y11 Wave Length Shifting (WLS) fibers threaded through the detector. A detector prototype made of 125 cubes was assembled and tested in a charged particle test beam at CERN in the fall of 2017. This paper presents the results obtained on the light yield and timing as well as on the optical cross-talk between the cubes.Comment: 5 pages, 8 figure

    Role of Quantum Confinement in Luminescence Efficiency of Group IV Nanostructures

    Full text link
    Experimental results obtained previously for the photoluminescence efficiency (PLeff_{eff}) of Ge quantum dots (QDs) are theoretically studied. A log\log-log\log plot of PLeff_{eff} versus QD diameter (DD) resulted in an identical slope for each Ge QD sample only when EG(D2+D)1E_{G}\sim (D^2+D)^{-1}. We identified that above DD\approx 6.2 nm: EGD1E_{G}\sim D^{-1} due to a changing effective mass (EM), while below DD\approx 4.6 nm: EGD2E_{G}\sim D^{-2} due to electron/ hole confinement. We propose that as the QD size is initially reduced, the EM is reduced, which increases the Bohr radius and interface scattering until eventually pure quantum confinement effects dominate at small DD

    Four quadrant 120 A, 10 V power converters for LHC

    Get PDF
    The LHC (Large Hadron Collider) particle accelerator makes extensive use of true bipolar power converters, with a high precision regulated output current requirement. A special design and topology is required to allow high performance within the converter operating area, including quadrant transition. This paper presents the ±120A ±10V power converter, well represented in the LHC power converters (300 units). The design is adapted for a wide range of magnet loads [from 10mH to 4 Henry] (time constant load [0.1s..1050s]) with stringent EMC requirements. A quick-connect system was applied to the converter modules allowing easy installation and maintenance operations. Discussion of 4 quadrant control and practical results are presented

    The digital data processing concepts of the LOFT mission

    Full text link
    The Large Observatory for X-ray Timing (LOFT) is one of the five mission candidates that were considered by ESA for an M3 mission (with a launch opportunity in 2022 - 2024). LOFT features two instruments: the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD is a 10 m 2 -class instrument with approximately 15 times the collecting area of the largest timing mission so far (RXTE) for the first time combined with CCD-class spectral resolution. The WFM will continuously monitor the sky and recognise changes in source states, detect transient and bursting phenomena and will allow the mission to respond to this. Observing the brightest X-ray sources with the effective area of the LAD leads to enormous data rates that need to be processed on several levels, filtered and compressed in real-time already on board. The WFM data processing on the other hand puts rather low constraints on the data rate but requires algorithms to find the photon interaction location on the detector and then to deconvolve the detector image in order to obtain the sky coordinates of observed transient sources. In the following, we want to give an overview of the data handling concepts that were developed during the study phase.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91446
    corecore