1,591 research outputs found

    Asymptotic behavior of the least common multiple of consecutive arithmetic progression terms

    Full text link
    Let ll and mm be two integers with l>m0l>m\ge 0, and let aa and bb be integers with a1a\ge 1 and a+b1a+b\ge 1. In this paper, we prove that loglcmmn<iln{ai+b}=An+o(n)\log {\rm lcm}_{mn<i\le ln}\{ai+b\} =An+o(n), where AA is a constant depending on l,ml, m and aa.Comment: 8 pages. To appear in Archiv der Mathemati

    Error suppression in Hamiltonian based quantum computation using energy penalties

    Get PDF
    We consider the use of quantum error detecting codes, together with energy penalties against leaving the codespace, as a method for suppressing environmentally induced errors in Hamiltonian based quantum computation. This method was introduced in [1] in the context of quantum adiabatic computation, but we consider it more generally. Specifically, we consider a computational Hamiltonian, which has been encoded using the logical qubits of a single-qubit error detecting code, coupled to an environment of qubits by interaction terms that act one-locally on the system. Energy penalty terms are added that penalize states outside of the codespace. We prove that in the limit of infinitely large penalties, one-local errors are completely suppressed, and we derive some bounds for the finite penalty case. Our proof technique involves exact integration of the Schrodinger equation, making no use of master equations or their assumptions. We perform long time numerical simulations on a small (one logical qubit) computational system coupled to an environment and the results suggest that the energy penalty method achieves even greater protection than our bounds indicate.Comment: 26 pages, 7 figure

    Quantum Energies of Interfaces

    Full text link
    We present a method for computing the one-loop, renormalized quantum energies of symmetrical interfaces of arbitrary dimension and codimension using elementary scattering data. Internal consistency requires finite-energy sum rules relating phase shifts to bound state energies.Comment: 8 pages, 1 figure, minor changes, Phys. Rev. Lett., in prin

    A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem

    Get PDF
    A quantum system will stay near its instantaneous ground state if the Hamiltonian that governs its evolution varies slowly enough. This quantum adiabatic behavior is the basis of a new class of algorithms for quantum computing. We test one such algorithm by applying it to randomly generated, hard, instances of an NP-complete problem. For the small examples that we can simulate, the quantum adiabatic algorithm works well, and provides evidence that quantum computers (if large ones can be built) may be able to outperform ordinary computers on hard sets of instances of NP-complete problems.Comment: 15 pages, 6 figures, email correspondence to [email protected] ; a shorter version of this article appeared in the April 20, 2001 issue of Science; see http://www.sciencemag.org/cgi/content/full/292/5516/47

    The least common multiple of a sequence of products of linear polynomials

    Full text link
    Let f(x)f(x) be the product of several linear polynomials with integer coefficients. In this paper, we obtain the estimate: loglcm(f(1),...,f(n))An\log {\rm lcm}(f(1), ..., f(n))\sim An as nn\rightarrow\infty , where AA is a constant depending on ff.Comment: To appear in Acta Mathematica Hungaric

    Derivation of the Quantum Probability Rule without the Frequency Operator

    Full text link
    We present an alternative frequencists' proof of the quantum probability rule which does not make use of the frequency operator, with expectation that this can circumvent the recent criticism against the previous proofs which use it. We also argue that avoiding the frequency operator is not only for technical merits for doing so but is closely related to what quantum mechanics is all about from the viewpoint of many-world interpretation.Comment: 12 page

    Using Classical Probability To Guarantee Properties of Infinite Quantum Sequences

    Full text link
    We consider the product of infinitely many copies of a spin-121\over 2 system. We construct projection operators on the corresponding nonseparable Hilbert space which measure whether the outcome of an infinite sequence of σx\sigma^x measurements has any specified property. In many cases, product states are eigenstates of the projections, and therefore the result of measuring the property is determined. Thus we obtain a nonprobabilistic quantum analogue to the law of large numbers, the randomness property, and all other familiar almost-sure theorems of classical probability.Comment: 7 pages in LaTe
    corecore