67 research outputs found
A Role for TLR4 in Clostridium difficile Infection and the Recognition of Surface Layer Proteins
Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4−/− and Myd88−/−, but not TRIF−/− mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system
Characterization of transcription within sdr region of Staphylococcus aureus
Staphylococcus aureus is an opportunistic pathogen responsible for various infections in humans and animals. It causes localized and systemic infections, such as abscesses, impetigo, cellulitis, sepsis, endocarditis, bone infections, and meningitis. S. aureus virulence factors responsible for the initial contact with host cells (MSCRAMMs—microbial surface components recognizing adhesive matrix molecules) include three Sdr proteins. The presence of particular sdr genes is correlated with putative tissue specificity. The transcriptional organization of the sdr region remains unclear. We tested expression of the sdrC, sdrD, or sdrE genes in various in vitro conditions, as well as after contact with human blood. In this work, we present data suggesting a separation of the sdr region into three transcriptional units, based on their differential reactions to the environment. Differential reaction of the sdrD transcript to environmental conditions and blood suggests dissimilar functions of the sdr genes. SdrE has been previously proposed to play role in bone infections, whilst our results can indicate that sdrD plays a role in the interactions between the pathogen and human immune system, serum or specifically reacts to nutrients/other factors present in human blood
Shotgun Phage Display - Selection for Bacterial Receptins or other Exported Proteins
Shotgun phage display cloning involves construction of libraries from randomly fragmented bacterial chromosomal DNA, cloned genes, or eukaryotic cDNAs, into a phagemid vector. The library obtained consists of phages expressing polypeptides corresponding to all genes encoded by the organism, or overlapping peptides derived from the cloned gene. From such a library, polypeptides with affinity for another molecule can be isolated by affinity selection, panning. The technique can be used to identify bacterial receptins and identification of their minimal binding domain, and but also to identify epitopes recognised by antibodies. In addition, after modification of the phagemid vector, the technique has also been used to identify bacterial extracytoplasmic proteins
The Clostridium difficile Cell Wall Protein CwpV is Antigenically Variable between Strains, but Exhibits Conserved Aggregation-Promoting Function
Clostridium difficile is the main cause of antibiotic-associated diarrhea, leading to significant morbidity and mortality and putting considerable economic pressure on healthcare systems. Current knowledge of the molecular basis of pathogenesis is limited primarily to the activities and regulation of two major toxins. In contrast, little is known of mechanisms used in colonization of the enteric system. C. difficile expresses a proteinaceous array on its cell surface known as the S-layer, consisting primarily of the major S-layer protein SlpA and a family of SlpA homologues, the cell wall protein (CWP) family. CwpV is the largest member of this family and is expressed in a phase variable manner. Here we show CwpV promotes C. difficile aggregation, mediated by the C-terminal repetitive domain. This domain varies markedly between strains; five distinct repeat types were identified and were shown to be antigenically distinct. Other aspects of CwpV are, however, conserved. All CwpV types are expressed in a phase variable manner. Using targeted gene knock-out, we show that a single site-specific recombinase RecV is required for CwpV phase variation. CwpV is post-translationally cleaved at a conserved site leading to formation of a complex of cleavage products. The highly conserved N-terminus anchors the CwpV complex to the cell surface. Therefore CwpV function, regulation and processing are highly conserved across C. difficile strains, whilst the functional domain exists in at least five antigenically distinct forms. This hints at a complex evolutionary history for CwpV
Oxidative Stability of Polyunsaturated Edible Oils Mixed With Microcrystalline Cellulose
The oxidative stability of mixtures of edible oils containing polyunsaturated fatty acids (PUFA) and microcrystalline cellulose (MCC) was investigated. The mixtures studied consisted of oils of either camelina (CAM), cod liver (CLO), or salmon (SO) mixed with either colloidal or powdered MCC. A 50:50 (w/w) ratio of oil:MCC resulted in an applicable mixture containing high levels of PUFA edible oil and dietary fiber. The oxidative stability of the formulated mixtures and the pure oils was investigated over a period of 28 days. The peroxide value (PV) was assessed as a parameter for primary oxidation products and dynamic headspace gas chromatography mass spectrometry (GC/MS) was used to analyze secondary volatile organic compounds (VOC). CAM and the respective mixtures were oxidatively stable at both 4 and 22 °C during the storage period. The marine oils and the respective mixtures were stable at 4 °C. At 22 °C, an increase in hydroperoxides was found, but no increase in VOC was detected during the time-frame investigated. At 42 °C, prominent increases in PV and VOC were found for all oils and mixtures. Hexanal, a common marker for the degradation of n-6 fatty acids, propanal and 2,4-heptadienal (E,E), common indicators for the degradation of n-3 fatty acids, were among the volatiles detected in the headspace of oils and mixtures. This study showed that a mixture containing a 50:50 ratio of oil:MCC can be obtained by a low-tech procedure that does not induce oxidation when stored at low temperatures during a period of 1 month
Crystal Structures Reveal the Multi-Ligand Binding Mechanism of Staphylococcus aureus ClfB
Staphylococcus aureus (S. aureus) pathogenesis is a complex process involving a diverse array of extracellular and cell wall components. ClfB, an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family surface protein, described as a fibrinogen-binding clumping factor, is a key determinant of S. aureus nasal colonization, but the molecular basis for ClfB-ligand recognition remains unknown. In this study, we solved the crystal structures of apo-ClfB and its complexes with fibrinogen α (Fg α) and cytokeratin 10 (CK10) peptides. Structural comparison revealed a conserved glycine-serine-rich (GSR) ClfB binding motif (GSSGXGXXG) within the ligands, which was also found in other human proteins such as Engrailed protein, TCF20 and Dermokine proteins. Interaction between Dermokine and ClfB was confirmed by subsequent binding assays. The crystal structure of ClfB complexed with a 15-residue peptide derived from Dermokine revealed the same peptide binding mode of ClfB as identified in the crystal structures of ClfB-Fg α and ClfB-CK10. The results presented here highlight the multi-ligand binding property of ClfB, which is very distinct from other characterized MSCRAMMs to-date. The adherence of multiple peptides carrying the GSR motif into the same pocket in ClfB is reminiscent of MHC molecules. Our results provide a template for the identification of other molecules targeted by S. aureus during its colonization and infection. We propose that other MSCRAMMs like ClfA and SdrG also possess multi-ligand binding properties
A Structural Model of the Staphylococcus aureus ClfA–Fibrinogen Interaction Opens New Avenues for the Design of Anti-Staphylococcal Therapeutics
The fibrinogen (Fg) binding MSCRAMM Clumping factor A (ClfA) from Staphylococcus aureus interacts with the C-terminal region of the fibrinogen (Fg) γ-chain. ClfA is the major virulence factor responsible for the observed clumping of S. aureus in blood plasma and has been implicated as a virulence factor in a mouse model of septic arthritis and in rabbit and rat models of infective endocarditis. We report here a high-resolution crystal structure of the ClfA ligand binding segment in complex with a synthetic peptide mimicking the binding site in Fg. The residues in Fg required for binding to ClfA are identified from this structure and from complementing biochemical studies. Furthermore, the platelet integrin αIIbβ3 and ClfA bind to the same segment in the Fg γ-chain but the two cellular binding proteins recognize different residues in the common targeted Fg segment. Based on these differences, we have identified peptides that selectively antagonize the ClfA-Fg interaction. The ClfA-Fg binding mechanism is a variant of the “Dock, Lock and Latch” mechanism previously described for the Staphylococcus epidermidis SdrG–Fg interaction. The structural insights gained from analyzing the ClfANFg peptide complex and identifications of peptides that selectively recognize ClfA but not αIIbβ3 may allow the design of novel anti-staphylococcal agents. Our results also suggest that different MSCRAMMs with similar structural organization may have originated from a common ancestor but have evolved to accommodate specific ligand structures
Evolutionary Analyses of Staphylococcus aureus Identify Genetic Relationships between Nasal Carriage and Clinical Isolates
Nasal carriage of Staphylococcus aureus has long been hypothesized to be a major vector for the transmission of virulent strains throughout the community. To address this hypothesis, we have analyzed the relatedness between a cohort of nasal carriage strains and clinical isolates to understand better the genetic conformity therein. To assess the relatedness between nasal carriage and clinical isolates of S. aureus, a genetic association study was conducted using multilocus sequence typing (MLST) and typing of the hypervariable regions of clumping factor and fibronectin binding protein genes. At all loci analyzed, genetic associations between both nasal carriage and clinical isolates were observed. Computational analyses of MLST data indicate that nasal carriage and clinical isolates belong to the same genetic clusters (clades), despite differences in sequence type assignments. Genetic analyses of the hypervariable regions from the clumping factor and fibronectin binding protein genes revealed that not only do clinically relevant strains belong to identical genetic lineages as the nasal carriage isolates within our cohort, but they also exhibit 100% sequence similarity within these regions. The findings of this report indicate that strains of S. aureus being carried asymptomatically throughout the community via nasal colonization are genetically related to those responsible for high levels of morbidity and mortality
The Multifunctional LigB Adhesin Binds Homeostatic Proteins with Potential Roles in Cutaneous Infection by Pathogenic Leptospira interrogans
Leptospirosis is a potentially fatal zoonotic disease in humans and animals caused by pathogenic spirochetes, such as Leptospira interrogans. The mode of transmission is commonly limited to the exposure of mucous membrane or damaged skin to water contaminated by leptospires shed in the urine of carriers, such as rats. Infection occurs during seasonal flooding of impoverished tropical urban habitats with large rat populations, but also during recreational activity in open water, suggesting it is very efficient. LigA and LigB are surface localized proteins in pathogenic Leptospira strains with properties that could facilitate the infection of damaged skin. Their expression is rapidly induced by the increase in osmolarity encountered by leptospires upon transition from water to host. In addition, the immunoglobulin-like repeats of the Lig proteins bind proteins that mediate attachment to host tissue, such as fibronectin, fibrinogen, collagens, laminin, and elastin, some of which are important in cutaneous wound healing and repair. Hemostasis is critical in a fresh injury, where fibrinogen from damaged vasculature mediates coagulation. We show that fibrinogen binding by recombinant LigB inhibits fibrin formation, which could aid leptospiral entry into the circulation, dissemination, and further infection by impairing healing. LigB also binds fibroblast fibronectin and type III collagen, two proteins prevalent in wound repair, thus potentially enhancing leptospiral adhesion to skin openings. LigA or LigB expression by transformation of a nonpathogenic saprophyte, L. biflexa, enhances bacterial adhesion to fibrinogen. Our results suggest that by binding homeostatic proteins found in cutaneous wounds, LigB could facilitate leptospirosis transmission. Both fibronectin and fibrinogen binding have been mapped to an overlapping domain in LigB comprising repeats 9–11, with repeat 11 possibly enhancing binding by a conformational effect. Leptospirosis patient antibodies react with the LigB domain, suggesting applications in diagnosis and vaccines that are currently limited by the strain-specific leptospiral lipopolysaccharide coats
Contribution of Coagulases towards Staphylococcus aureus Disease and Protective Immunity
The bacterial pathogen Staphylococcus aureus seeds abscesses in host tissues to replicate at the center of these lesions, protected from host immune cells via a pseudocapsule. Using histochemical staining, we identified prothrombin and fibrin within abscesses and pseudocapsules. S. aureus secretes two clotting factors, coagulase (Coa) and von Willebrand factor binding protein (vWbp). We report here that Coa and vWbp together are required for the formation of abscesses. Coa and vWbp promote the non-proteolytic activation of prothrombin and cleavage of fibrinogen, reactions that are inhibited with specific antibody against each of these molecules. Coa and vWbp specific antibodies confer protection against abscess formation and S. aureus lethal bacteremia, suggesting that coagulases function as protective antigens for a staphylococcal vaccine
- …