92 research outputs found
Constant Size Molecular Descriptors For Use With Machine Learning
A set of molecular descriptors whose length is independent of molecular size
is developed for machine learning models that target thermodynamic and
electronic properties of molecules. These features are evaluated by monitoring
performance of kernel ridge regression models on well-studied data sets of
small organic molecules. The features include connectivity counts, which
require only the bonding pattern of the molecule, and encoded distances, which
summarize distances between both bonded and non-bonded atoms and so require the
full molecular geometry. In addition to having constant size, these features
summarize information regarding the local environment of atoms and bonds, such
that models can take advantage of similarities resulting from the presence of
similar chemical fragments across molecules. Combining these two types of
features leads to models whose performance is comparable to or better than the
current state of the art. The features introduced here have the advantage of
leading to models that may be trained on smaller molecules and then used
successfully on larger molecules.Comment: 18 pages, 5 figure
Compositional inductive biases in function learning.
How do people recognize and learn about complex functional structure? Taking inspiration from other areas of cognitive science, we propose that this is achieved by harnessing compositionality: complex structure is decomposed into simpler building blocks. We formalize this idea within the framework of Bayesian regression using a grammar over Gaussian process kernels, and compare this approach with other structure learning approaches. Participants consistently chose compositional (over non-compositional) extrapolations and interpolations of functions. Experiments designed to elicit priors over functional patterns revealed an inductive bias for compositional structure. Compositional functions were perceived as subjectively more predictable than non-compositional functions, and exhibited other signatures of predictability, such as enhanced memorability and reduced numerosity. Taken together, these results support the view that the human intuitive theory of functions is inherently compositional
Convolutional Networks on Graphs for Learning Molecular Fingerprints.
We introduce a convolutional neural network that operates directly on graphs. These networks allow end-to-end learning of prediction pipelines whose inputs are graphs of arbitrary size and shape. The architecture we present generalizes standard molecular feature extraction methods based on circular fingerprints. We show that these data-driven features are more interpretable, and have better predictive performance on a variety of tasks.Chemistry and Chemical Biolog
Autonomous discovery in the chemical sciences part II: Outlook
This two-part review examines how automation has contributed to different
aspects of discovery in the chemical sciences. In this second part, we reflect
on a selection of exemplary studies. It is increasingly important to articulate
what the role of automation and computation has been in the scientific process
and how that has or has not accelerated discovery. One can argue that even the
best automated systems have yet to ``discover'' despite being incredibly useful
as laboratory assistants. We must carefully consider how they have been and can
be applied to future problems of chemical discovery in order to effectively
design and interact with future autonomous platforms.
The majority of this article defines a large set of open research directions,
including improving our ability to work with complex data, build empirical
models, automate both physical and computational experiments for validation,
select experiments, and evaluate whether we are making progress toward the
ultimate goal of autonomous discovery. Addressing these practical and
methodological challenges will greatly advance the extent to which autonomous
systems can make meaningful discoveries.Comment: Revised version available at 10.1002/anie.20190998
Assessing the impact of a health intervention via user-generated Internet content
Assessing the effect of a health-oriented intervention by traditional epidemiological methods is commonly based only on population segments that use healthcare services. Here we introduce a complementary framework for evaluating the impact of a targeted intervention, such as a vaccination campaign against an infectious disease, through a statistical analysis of user-generated content submitted on web platforms. Using supervised learning, we derive a nonlinear regression model for estimating the prevalence of a health event in a population from Internet data. This model is applied to identify control location groups that correlate historically with the areas, where a specific intervention campaign has taken place. We then determine the impact of the intervention by inferring a projection of the disease rates that could have emerged in the absence of a campaign. Our case study focuses on the influenza vaccination program that was launched in England during the 2013/14 season, and our observations consist of millions of geo-located search queries to the Bing search engine and posts on Twitter. The impact estimates derived from the application of the proposed statistical framework support conventional assessments of the campaign
Additive Gaussian Processes
We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks
Additive Gaussian processes
We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks
Warped Mixtures for Nonparametric Cluster Shapes
A mixture of Gaussians fit to a single curved or heavy-tailed cluster will report that the data contains many clusters. To produce more appropriate clusterings, we introduce a model which warps a latent mixture of Gaussians to produce nonparametric cluster shapes. The possibly low-dimensional latent mixture model allows us to summarize the properties of the high-dimensional clusters (or density manifolds) describing the data. The number of manifolds, as well as the shape and dimension of each manifold is automatically inferred. We derive a simple inference scheme for this model which analytically integrates out both the mixture parameters and the warping function. We show that our model is effective for density estimation, performs better than infinite Gaussian mixture models at recovering the true number of clusters, and produces interpretable summaries of high-dimensional datasets
- …