49 research outputs found

    Mercury Accumulation in Tree Rings: Observed Trends in Quantity and Isotopic Composition in Shenandoah National Park, Virginia

    Full text link
    Recent studies have shown that mercury (Hg) concentrations in tree rings have the potential to archive historical Hg exposure from local, regional, and global sources. The southeastern United States has received elevated Hg deposition, yet no studies have evaluated tree ring Hg in this region. Here, we quantify Hg accumulation and isotopic composition in tree rings collected in Shenandoah National Park, Virginia. Cores were collected from three individuals of three tree species—white oak (Quercus alba), northern red oak (Quercus rubra), and pitch pine (Pinus rigida)—within the northern, central, and southern areas of the Park (n = 27 cores). The cores were analyzed for Hg content in 10‐year increments, with some cores dating back to the early 1800s. Overall, tree ring Hg concentrations (ranging from below detection to 4.4 ng/g) were similar to other studies and varied between species, with pitch pine having higher concentrations than the deciduous species. The most notable feature of the tree ring Hg time series was a peak that occurred during the 1930s through 1950s, coinciding with the use of Hg at a local industrial facility. Atmospheric modeling indicates that potential emissions from the plant likely had a stronger impact on the southern region of the Park, consistent with the latitudinal gradient in tree ring Hg concentrations. Mass‐dependent and mass‐independent fractionation of Hg isotopes suggests contributions from both regional anthropogenic and local industrial sources during this period. This study demonstrates the potential usefulness of tree ring dendrochemistry for identifying historical sources of atmospheric Hg exposure.Key PointsTree ring mercury levels in Shenandoah National Park, Virginia, were similar to those measured in other North American forestsTree ring mercury peaked during the 1930s to 1950s, coinciding with mercury use at an industrial facility near the southern end of the ParkMercury isotopes suggest a local source at this time, demonstrating the potential of dendrochemistry to identify historical sourcesPlain Language SummaryFor many years scientists have used tree rings to reconstruct past climate. Increasingly, tree rings are being used to document the historical exposure of trees to pollutants. In this study, we cored trees in Shenandoah National Park, Virginia, dated the tree rings, and then measured the amount of mercury stored within decadal core increments. We were surprised to find that mercury levels peaked in the 1930s to 1950s, even though global mercury emissions continued to rise throughout the past century, mostly as a by‐product of energy production. Our findings suggest that the trees were exposed to a local pollutant source during this earlier time period, perhaps from a nearby industrial plant that used mercury in the production of rayon. By examining the chemistry of wood within tree rings, we can get a clearer picture of when and where human activities have affected air pollution over recent centuries.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153685/1/jgrg21576_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153685/2/jgrg21576.pd

    Ornamental plants, 1985: a summary of research

    Get PDF
    Field transplant survival of Amelanchier liners produced by tissue culture / Daniel K. Struve and R. Daniel Lineberger -- An evaluation of strawdust - an alternative growing media / Elton M. Smith and Sharon A. Treaster -- Growth of container grown nursery stock produced in composted municipal sludge amended media / Elton M. Smith and Sharon A. Treaster -- Soil temperature effects on root regeneration of scarlet oak seedlings / Daniel K. Struve arid Bruno C. Moser -- Lighting Viburnum opulus 'Nanum' cuttings to increase winter survival / Elton M. Smith and Sharon A. Treaster -- Treatments of etiolated dormant rose shoots / Elton M. Smith and Sharon A. Treaster -- Evaluation of flowering crabapple susceptibility to apple scab in Ohio – 1984 / Elton M. Smith and Sharon A. Treaster -- Tolerance of azalea, cotoneaster, and euonymus to Devrinol, Goal, and Goal Combinations / Elton M. Smith and Sharon A. Treaster -- Micropropagation of chimeral african violets / R. Daniel Lineberger and Mark Druckenbrod -- capital requirements of overwintering structures for nurseries in Ohio - 1984 / Reed D. Taylor, Daryl T. Gillette, and Elton M. Smith -- annual fixed costs of overwintering plants in nurseries differentiated by type of structure for Ohio - 1984 / Daryl T. Gillette, Reed D. Taylor, and Elton M. Smith -- Comparative costs of overwintering plants in nurseries differentiated by system for Ohio - 1984 / Reed D. Taylor, Daryl T. Gillette, and Elton M. Smit

    Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production

    Get PDF
    The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the gut wall. The mechanisms regulating enteric neural crest-derived cell (ENCC) migration are poorly characterized despite the importance of this process in gut formation and function. Characterization of genes involved in ENCC migration is essential to understanding ENS development and could provide targets for treatment of human ENS disorders. We identified the extracellular matrix glycoprotein tenascin-C (TNC) as an important regulator of ENCC development. We find TNC dynamically expressed during avian gut development. It is absent from the cecal region just prior to ENCC arrival, but becomes strongly expressed around ENCCs as they enter the ceca and hindgut. In aganglionic hindguts, TNC expression is strong throughout the outer mesenchyme, but is absent from the submucosal region, supporting the presence of both ENCC-dependent and independent expression within the gut wall. Using rat-chick coelomic grafts, neural tube cultures, and gut explants, we show that ENCCs produce TNC and that this ECM protein promotes their migration. Interestingly, only vagal neural crest-derived ENCCs express TNC, whereas sacral neural crest-derived cells do not. These results demonstrate that vagal crest-derived ENCCs actively modify their microenvironment through TNC expression and thereby help to regulate their own migration

    Assessing Temperate Forest Growth and Climate Sensitivity in Response to a Long-Term Whole-Watershed Acidification Experiment

    Get PDF
    Acid deposition is a major biogeochemical driver in forest ecosystems, but the impacts of long-term changes in deposition on forest productivity remain unclear. Using a combination of tree ring and forest inventory data, we examined tree growth and climate sensitivity in response to 26 years of whole-watershed ammonium sulfate ((NH4)2SO4) additions at the Fernow Experimental Forest (West Virginia, USA). Linear mixed effects models revealed species-specific responses to both treatment and hydroclimate variables. When controlling for environmental covariates, growth of northern red oak (Quercus rubra), red maple (Acer rubrum), and tulip poplar (Liriodendron tulipifera) was greater (40%, 52%, and 42%, respectively) in the control watershed compared to the treated watershed, but there was no difference in black cherry (Prunus serotina). Stem growth was generally positively associated with growing season water availability and spring temperature and negatively associated with vapor pressure deficit. Sensitivity of northern red oak, red maple, and tulip poplar growth to water availability was greater in the control watershed, suggesting that acidification treatment has altered tree response to climate. Results indicate that chronic acid deposition may reduce both forest growth and climate sensitivity, with potentially significant implications for forest carbon and water cycling in deposition-affected regions

    Use of RNAlater in fluorescence-activated cell sorting (FACS) reduces the fluorescence from GFP but not from DsRed

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flow cytometry utilizes signals from fluorescent markers to separate targeted cell populations for gene expression studies. However, the stress of the FACS process could change normal gene expression profiles. RNAlater could be used to stop such changes in original gene expression profiles through its ability to denature RNase and other proteins. The normal conformational structure of fluorescent proteins must be maintained in order to fluoresce. Whether or not RNAlater would affect signals from different types of intrinsic fluorescent proteins is crucial to its use in flow cytometry; this question has not been investigated in detail.</p> <p>Findings</p> <p>To address this question, we analyzed the effect of RNAlater on fluorescence intensity of GFP, YFP, DsRed and small fluorescent molecules attached to secondary antibodies (Cy2 and Texas-Red) when used in flow cytometry. FACS results were confirmed with fluorescence microscopy. Our results showed that exposure of YFP and GFP containing cells to RNAlater reduces the intensity of their fluorescence to such an extent that separation of such labeled cells is difficult if not impossible. In contrast, signals from DsRed2, Cy2 and Texas-Red were not affected by RNAlater treatment. In addition, the background fluorescence and clumping of dissociated cells are altered by RNAlater treatment.</p> <p>Conclusions</p> <p>When considering gene expression studies using cell sorting with RNAlater, DsRed is the fluorescent protein of choice while GFP/YFP have severe limitations because of their reduced fluorescence. It is necessary to examine the effects of RNAlater on signals from fluorescent markers and the physical properties (e.g., clumping) of the cells before considering its use in cell sorting.</p

    Reconstructing 800 years of summer temperatures in Scotland from tree rings

    Get PDF
    We thank The Carnegie Trust for the Universities of Scotland for providing funding for Miloơ Rydval’s PhD. The Scottish pine network expansion has been an ongoing task since 2007 and funding must be acknowledged to the following projects: EU project ‘Millennium’ (017008-2), Leverhulme Trust project ‘RELiC: Reconstructing 8000 years of Environmental and Landscape change in the Cairngorms (F/00 268/BG)’ and the NERC project ‘SCOT2K: Reconstructing 2000 years of Scottish climate from tree rings (NE/K003097/1)’.This study presents a summer temperature reconstruction using Scots pine tree-ring chronologies for Scotland allowing the placement of current regional temperature changes in a longer-term context. ‘Living-tree’ chronologies were extended using ’subfossil’ samples extracted from nearshore lake sediments resulting in a composite chronology > 800 years in length. The North Cairngorms (NCAIRN) reconstruction was developed from a set of composite blue intensity high-pass and ring-width low-pass chronologies with a range of detrending and disturbance correction procedures. Calibration against July-August mean temperature explains 56.4% of the instrumental data variance over 1866-2009 and is well verified. Spatial correlations reveal strong coherence with temperatures over the British Isles, parts of western Europe, southern Scandinavia and northern parts of the Iberian Peninsula. NCAIRN suggests that the recent summer-time warming in Scotland is likely not unique when compared to multi-decadal warm periods observed in the 1300s, 1500s, and 1730s, although trends before the mid-16th century should be interpreted with some caution due to greater uncertainty. Prominent cold periods were identified from the 16th century until the early 1800s – agreeing with the so-called Little Ice Age observed in other tree-ring reconstructions from Europe - with the 1690s identified as the coldest decade in the record. The reconstruction shows a significant cooling response one year following volcanic eruptions although this result is sensitive to the datasets used to identify such events. In fact, the extreme cold (and warm) years observed in NCAIRN appear more related to internal forcing of the summer North Atlantic Oscillation.Publisher PDFPeer reviewe

    Genetic Background Strongly Modifies the Severity of Symptoms of Hirschsprung Disease, but Not Hearing Loss in Rats Carrying Ednrbsl Mutations

    Get PDF
    Hirschsprung disease (HSCR) is thought to result as a consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the developing gut. However, it remains unknown whether the single complete deletion of important HSCR-associated genes is sufficient to result in HSCR disease. In this study, we found that the null mutation of the Ednrb gene, thought indispensable for enteric neuron development, is insufficient to result in HSCR disease when bred onto a different genetic background in rats carrying Ednrbsl mutations. Moreover, we found that this mutation results in serious congenital sensorineural deafness, and these strains may be used as ideal models of Waardenburg Syndrome Type 4 (WS4). Furthermore, we evaluated how the same changed genetic background modifies three features of WS4 syndrome, aganglionosis, hearing loss, and pigment disorder in these congenic strains. We found that the same genetic background markedly changed the aganglionosis, but resulted in only slight changes to hearing loss and pigment disorder. This provided the important evidence, in support of previous studies, that different lineages of neural crest-derived cells migrating along with various pathways are regulated by different signal molecules. This study will help us to better understand complicated diseases such as HSCR and WS4 syndrome
    corecore