491 research outputs found

    An inducible Cre mouse line to sparsely target nervous system cells, including Remak Schwann cells

    Get PDF
    Nerves of the peripheral nervous system contain two classes of Schwann cells: myelinating Schwann cells that ensheath large caliber axons and generate the myelin sheath, and Remak Schwann cells that surround smaller axons and do not myelinate. While tools exist for genetic targeting of Schwann cell precursors and myelinating Schwann cells, such reagents have been challenging to generate specifically for the Remak population, in part because many of the genes that mark this population in maturity are also robustly expressed in Schwann cell precursors. To circumvent this challenge, we utilized BAC transgenesis to generate a mouse line expressing a tamoxifen-inducible Cre under the control of a Remak-expressed gene promoter (Egr1). However, as Egr1 is also an activity dependent gene expressed by some neurons, we flanked this Cre by flippase (Flpe) recognition sites, and coinjected a BAC expressing Flpe under control of a pan-neuronal Snap25 promoter to excise the Cre transgene from these neuronal cells. Genotyping and inheritance demonstrate that the two BACs co-integrated into a single locus, facilitating maintenance of the line. Anatomical studies following a cross to a reporter line show sparse tamoxifen-dependent recombination in Remak Schwann cells within the mature sciatic nerve. However, depletion of neuronal Cre activity by Flpe is partial, with some neurons and astrocytes also showing evidence of Cre reporter activity in the central nervous system. Thus, this mouse line will be useful in mosaic loss-of-function studies, lineage tracing studies following injury, live cell imaging studies, or other experiments benefiting from sparse labeling

    Quantitative nucleotide level analysis of regulation of translation in response to depolarization of cultured neural cells

    Get PDF
    Studies on regulation of gene expression have contributed substantially to understanding mechanisms for the long-term activity-dependent alterations in neural connectivity that are thought to mediate learning and memory. Most of these studies, however, have focused on the regulation of mRNA transcription. Here, we utilized high-throughput sequencing coupled with ribosome footprinting to globally characterize the regulation of translation in primary mixed neuronal-glial cultures in response to sustained depolarization. We identified substantial and complex regulation of translation, with many transcripts demonstrating changes in ribosomal occupancy independent of transcriptional changes. We also examined sequence-based mechanisms that might regulate changes in translation in response to depolarization. We found that these are partially mediated by features in the mRNA sequence—notably upstream open reading frames and secondary structure in the 5′ untranslated region—both of which predict downregulation in response to depolarization. Translationally regulated transcripts are also more likely to be targets of FMRP and include genes implicated in autism in humans. Our findings support the idea that control of mRNA translation plays an important role in response to neural activity across the genome

    Drug-Phospholipid Complex-loaded Matrix Film Formulation for the Enhanced Transdermal Delivery of Quercetin

    Get PDF
    A novel quercetin-phospholipid-complex(QPLC)-loaded matrix film for improved transdermal delivery of quercetin was developed. The QPLC formulation, prepared using a solvent-evaporation method, was optimized using a central-composite design. The optimized QPLC formulation was characterized by particle size and zeta potential analysis, thermal analysis, Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). QPLC formulation was functionally evaluated for solubility and in vitro dissolution of quercetin. Matrix films of pure quercetin (Q-MF)or QPLC QPLC-MF) were prepared using a solvent casting method. The prepared Q-MF and QPLC-MF were characterized for weight uniformity, folding endurance, moisture content, and moisture uptake. The films were also functionally characterized for in vitro diffusion of quercetin through a dialysis membrane and ex vivo permeability of quercetin across rat skin. Finally, the anti-inflammatory activity of the films was evaluated on carrageenan-induced paw edema in Wistar albino rats. The experimental design identified the optimal formulation and process variables for the preparation of QPLC. The validation of the obtained model using these values confirmed the suitability and robustness of the model. The physical-chemical characterization of the prepared QPLC supported the formation of a stable complex. The solubility analysis of QPLC showed a 22-fold increase in quercetin aqueous solubility, compared to pure quercetin. The dissolution results exhibited a significantly higher rate and extent of quercetin dissolution from QPLC compared to that of pure quercetin. The permeability of quercetin from Q-MF and QPLC-MF across rat skin mirrored those obtained from the dissolution studies. Topical application of QPLC-MF exhibited a significant (p\u3c0.05) inhibition of carrageenan-induced paw edema in rats compared to that of Q-MF. This study provides a promising combination approach, i.e., phospholipid-based complexation and transdermal film formulation for improved transdermal delivery of quercetin and similar pharmacologically active phytoconstituents

    Physico-chemical characterization of Antheraea mylitta silk mats for wound healing applications.

    Get PDF
    In the field of plastic reconstructive surgery, development of new innovative matrices for skin repair is in demand. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, not exerting a pathological immune response. The materials used should display optimized mechanical properties to sustain cell growth and limit scaffold contraction. Wound healing is a biological process directed towards restoration of tissue that has suffered an injury. An important phase of wound healing is the generation of a basal epithelium wholly replacing the epidermis of the wound. Wild silk from Antheraea mylitta meets these demands to a large extent. To evaluate the effects of the treatment, Antheraea mylitta and Bombyx mori samples were characterized by SEM-EDX, FT-IR, XRD and TGA-DSC techniques. Preliminary cell growth behavior was carried out by culturing epidermal cells and proliferation was quantified via viability assay. Moreover, Antheraea mylitta possesses excellent cell-adhesive capability, effectively promoting cell attachment and proliferation. Antheraea mylitta serves as a delivery vehicle for cells. With all these unique features, it is expected that Antheraea mylitta mat will have wide utility in the areas of tissue engineering and regenerative medicine.Prof. Shyamkumar Vootla and Dr. Julien Gautrot thanks to Department of Science and Technology (DST), New Delhi. India and United Kingdom India Education and Research Initiative (UKIERI), British Council, United Kingdom, for funding of this project (DST/INT/UK/P-52). Tis work was supported by Commonwealth Academic Fellowship awarded to Prof. Shyamkumar Vootla by the Commonwealth Association of Universities, United Kingdom

    High temperature magnetic ordering in La2RuO5

    Full text link
    Magnetic susceptibility, heat capacity and electrical resistivity measurements have been carried out on a new ruthenate, La2RuO5 (monoclinic, space group P21/c) which reveal that this compound is a magnetic semiconductor with a high magnetic ordering temperature of 170K. The entropy associated with the magnetic transition is 8.3 J/mole-K -close to that expected for the low spin (S=1) state of Ru4+ ions. The low temperatures specific heat coefficient g is found to be nearly zero consistent with the semiconducting nature of the compound. The magnetic ordering temperature of La2RuO5 is comparable to the highest known Curie temperature of another ruthenate, namely, metallic SrRuO3, and in both these compounds the nominal charge state of Ru is 4+.Comment: 16 pages, 6 figures, To be published in Solid State Communication
    • …
    corecore