505 research outputs found

    Equilibrium spherically curved 2D Lennard-Jones systems

    Get PDF
    To learn about basic aspects of nano-scale spherical molecular shells during their formation, spherically curved two-dimensional N-particle Lennard-Jones systems are simulated, studying curvature evolution paths at zero-temperature. For many N-values (N<800) equilibrium configurations are traced as a function of the curvature radius R. Sharp jumps for tiny changes in R between trajectories with major differences in topological structure correspond to avalanche-like transitions. For a typical case, N=25, equilibrium configurations fall on smooth trajectories in state space which can be traced in the E-R plane. The trajectories show-up with local energy minima, from which growth in N at steady curvature can develop.Comment: 10 pages, 2 figures, to be published in Journal of Chemical Physic

    Dynamics of Air-Fluidized Granular System Measured by the Modulated Gradient Spin-echo

    Full text link
    The power spectrum of displacement fluctuation of beads in the air-fluidized granular system is measured by a novel NMR technique of modulated gradient spin-echo. The results of measurement together with the related spectrum of the velocity fluctuation autocorrelation function fit well to an empiric formula based on to the model of bead caging between nearest neighbours; the cage breaks up after a few collisions \cite{Menon1}. The fit yields the characteristic collision time, the size of bead caging and the diffusion-like constant for different degrees of system fluidization. The resulting mean squared displacement increases proportionally to the second power of time in the short-time ballistic regime and increases linearly with time in the long-time diffusion regime as already confirmed by other experiments and simulations.Comment: 4 figures. Submited to Physical Review Letters, April 200

    Blood particulate analogue fluids: A review

    Get PDF
    Microfluidics has proven to be an extraordinary working platform to mimic and study blood flow phenomena and the dynamics of components of the human microcirculatory system. However, the use of real blood increases the complexity to perform these kinds of in vitro blood experiments due to diverse problems such as coagulation, sample storage, and handling problems. For this reason, interest in the development of fluids with rheological properties similar to those of real blood has grown over the last years. The inclusion of microparticles in blood analogue fluids is essential to reproduce multiphase effects taking place in a microcirculatory system, such as the cell-free layer (CFL) and Fähraeus–Lindqvist effect. In this review, we summarize the progress made in the last twenty years. Size, shape, mechanical properties, and even biological functionalities of microparticles produced/used to mimic red blood cells (RBCs) are critically exposed and analyzed. The methods developed to fabricate these RBC templates are also shown. The dynamic flow/rheology of blood particulate analogue fluids proposed in the literature (with different particle concentrations, in most of the cases, relatively low) is shown and discussed in-depth. Although there have been many advances, the development of a reliable blood particulate analogue fluid, with around 45% by volume of microparticles, continues to be a big challengeThis research was funded by the Spanish Ministry of Science and Education Grant No. PID2019-108278RB-C32 / AEI / 10.13039/501100011033, and Junta de Extremadura (Spain) Grant Nos. GR18175 and IB18005 (partially financed by FEDER funds). The authors also acknowledge the Fundação para a Ciência e a Tecnologia (FCT) for partially financing the research under the strategic grants UIDB/04077/2020, UIDB/00532/2020, and the project NORTE-01-0145-FEDER030171 (PTDC/EME-SIS/30171/2017) funded by COMPETE2020, NORTE 2020, PORTUGAL 2020, Lisb@2020, and FEDE

    Critical swelling of particle-encapsulating vesicles

    Full text link
    We consider a ubiquitous scenario where a fluctuating, semipermeable vesicle is embedded in solution while enclosing a fixed number of solute particles. The swelling with increasing number of particles or decreasing concentration of the outer solution exhibits a continuous phase transition from a fluctuating state to the maximum-volume configuration, whereupon appreciable pressure difference and surface tension build up. This criticality is unique to particle-encapsulating vesicles, whose volume and inner pressure both fluctuate. It implies a universal swelling behavior of such vesicles as they approach their limiting volume and osmotic lysis.Comment: 4 pages, 1 figur

    Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size

    Full text link
    We identify a class of composite membranes: fluid bilayers coupled to an elastic meshwork, that are such that the meshwork's energy is a function Fel[Aξ]F_\mathrm{el}[A_\xi] \textit{not} of the real microscopic membrane area AA, but of a \textit{smoothed} membrane's area AξA_\xi, which corresponds to the area of the membrane coarse-grained at the mesh size ξ\xi. We show that the meshwork modifies the membrane tension σ\sigma both below and above the scale ξ\xi, inducing a tension-jump Δσ=dFel/dAξ\Delta\sigma=dF_\mathrm{el}/dA_\xi. The predictions of our model account for the fluctuation spectrum of red blood cells membranes coupled to their cytoskeleton. Our results indicate that the cytoskeleton might be under extensional stress, which would provide a means to regulate available membrane area. We also predict an observable tension jump for membranes decorated with polymer "brushes"

    A Sucrose Solution Application to the Study of Model Biological Membranes

    Full text link
    The small-angle X-ray and neutron scattering, time resolved X-ray small-angle and wide-angle diffraction coupled with differential scanning calorimetry have been applied to the investigation of unilamellar and multilamellar dimyristoylphosphatidylcholine (DMPC) vesicles in sucrose buffers with sucrose concentrations from 0 to 60%. Sucrose buffer decreased vesicle size and polydispersity and increased an X-ray contrast between phospholipid membrane and bulk solvent sufficiently. No influence of sucrose on the membrane thickness or mutual packing of hydrocarbon chains has been detected. The region of sucrose concentrations 30%-40% created the best experimental conditions for X-ray small-angle experiments with phospholipid vesicles.Comment: PDF: 10 pages, 6 figures. MS Word sours

    Fluorescence studies on new potential antitumoral benzothienopyran-1-ones in solution and in liposomes

    Get PDF
    Fluorescence properties of four new potential antitumoral compounds, 3-arylbenzothieno[2,3-c]pyran-1-ones, were studied in solution and in lipid membranes of dipalmitoyl phosphatidylcholine (DPPC), egg yolk phosphatidylcholine (Egg-PC) and dioctadecyldimethylammonium bromide (DODAB). The 3-(4-methoxyphenyl)benzothieno[2,3-c]pyran-1-one (1c) exhibits the higher fluorescence quantum yields in all solvents studied. All compounds present a solvent sensitive emission, with significant red shifts in polar solvents for the methoxylated compounds. The results point to an ICT character of the excited state, more pronounced for compound 1c. Fluorescence (steady-state) anisotropy measurements of the compounds incorporated in liposomes of DPPC, DODAB and Egg-PC indicate that all compounds have two different locations, one due to a deep penetration in the lipid membrane and another corresponding to a more hydrated environment. In general, the methoxylated compounds prefer hydrated environments inside the liposomes. The 3-(4- fluorophenyl)benzothieno[2,3-c]pyran-1-one (1a) clearly prefers a hydrated environment, with some molecules located at the outer part of the liposome interface. On the contrary, the preferential location of 3-(2-fluorophenyl)benzothieno[2,3-c]pyran-1-one (1b) is in the region of lipid hydrophobic tails. Compounds with a planar geometry (1a and 1c) have higher mobility in the lipid membranes when phase transition occurs.Portugal and FEDER (Fundo Europeu de Desenvolvimento Regional), for financial support through Centro de Física (CFUM) and Centro de Química (CQ-UM) of University of Minho and through the Project PTDC/QUI/81238/2006. M.S.D. Carvalho and R.C. Calhelha acknowledge FCT for their PhD grants SFRH/BD/47052/2008 and SFRH/BD/29274/2006, respectively.Fundação para a Ciência e a Tecnologia (FCT

    ALA and ALA hexyl ester in free and liposomal formulations for the photosensitisation of tumour organ cultures

    Get PDF
    In spite of the wide range of tumours successfully treated with 5-aminolevulinic acid mediated photodynamic therapy, the fact that 5-aminolevulinic acid has low lipid solubility, limits its clinical application. More lipophilic 5-aminolevulinic acid prodrugs and the use of liposomal carriers are two approaches aimed at improving 5-aminolevulinic acid transmembrane access. In this study we used both 5-aminolevulinic acid and its hexyl ester in their free and encapsulated formulations to compare their corresponding endogenous synthesis of porphyrins. Employing murine tumour cultures, we found that neither the use of hexyl ester nor the entrappment of either 5-aminolevulinic acid or hexyl ester into liposomes increase the rate of tumour porphyrin synthesis. By light and electronic microscopy it was demonstrated that exposure of tumour explants to either free or liposomal 5-aminolevulinic acid and subsequent illumination induces the same type of subcellullar damage. Mitochondria, endoplasmic reticulum and plasma membrane are the structures mostly injured in the early steps of photodynamic treatment. In a later stage, cytoplasmic and nuclear disintegration are observed. By electronic microscopy the involvement of the endocytic pathway in the incorporation of liposomal 5-aminolevulinic acid into the cells was shown

    Conventional and Dense Gas Techniques for the Production of Liposomes: A Review

    Get PDF
    The aim of this review paper is to compare the potential of various techniques developed for production of homogenous, stable liposomes. Traditional techniques, such as Bangham, detergent depletion, ether/ethanol injection, reverse-phase evaporation and emulsion methods, were compared with the recent advanced techniques developed for liposome formation. The major hurdles for scaling up the traditional methods are the consumption of large quantities of volatile organic solvent, the stability and homogeneity of the liposomal product, as well as the lengthy multiple steps involved. The new methods have been designed to alleviate the current issues for liposome formulation. Dense gas liposome techniques are still in their infancy, however they have remarkable advantages in reducing the use of organic solvents, providing fast, single-stage production and producing stable, uniform liposomes. Techniques such as the membrane contactor and heating methods are also promising as they eliminate the use of organic solvent, however high temperature is still required for processing
    corecore