1,647 research outputs found

    RNA secondary structure design

    Get PDF
    We consider the inverse-folding problem for RNA secondary structures: for a given (pseudo-knot-free) secondary structure find a sequence that has that structure as its ground state. If such a sequence exists, the structure is called designable. We implemented a branch-and-bound algorithm that is able to do an exhaustive search within the sequence space, i.e., gives an exact answer whether such a sequence exists. The bound required by the branch-and-bound algorithm are calculated by a dynamic programming algorithm. We consider different alphabet sizes and an ensemble of random structures, which we want to design. We find that for two letters almost none of these structures are designable. The designability improves for the three-letter case, but still a significant fraction of structures is undesignable. This changes when we look at the natural four-letter case with two pairs of complementary bases: undesignable structures are the exception, although they still exist. Finally, we also study the relation between designability and the algorithmic complexity of the branch-and-bound algorithm. Within the ensemble of structures, a high average degree of undesignability is correlated to a long time to prove that a given structure is (un-)designable. In the four-letter case, where the designability is high everywhere, the algorithmic complexity is highest in the region of naturally occurring RNA.Comment: 11 pages, 10 figure

    Ohio Conservation Plan: Plains gartersnake, Thamnophis radix

    Get PDF
    This plan outlines strategies and methods used in an ongoing study initiated in 1999 to restore a selfsustaining population of the Plains gartersnake (Thamnophis radix) in Ohio. Restoring a self-sustaining population would require increases in the current population to where the ratios of T. radix to T. sirtalis are approximately 1:1 in multiple locations in Killdeer Plains Wildlife Area (KPWA). This ratio would be similar to what was seen earlier by Reichenbach and Dalrymple (1986) at one site in KPWA. The plan was developed by a team of enthusiastic conservationists representing, the Division of Wildlife (ODW), the Columbus and Cleveland Zoos, Westerville North High School Field Study Class, Liberty University, Northern Illinois University, and the University of Tennessee. A thorough review of the plan will be made in 2012 with revisions and updates as needed

    Eliciting a predatory response in the eastern corn snake (Pantherophis guttatus) using live and inanimate sensory stimuli: implications for managing invasive populations

    Get PDF
    North America's Eastern corn snake (Pantherophis guttatus) has been introduced to several islands throughout the Caribbean and Australasia where it poses a significant threat to native wildlife. Invasive snake control programs often involve trapping with live bait, a practice that, as well as being costly and labour intensive, raises welfare and ethical concerns. This study assessed corn snake response to live and inanimate sensory stimuli in an attempt to inform possible future trapping of the species and the development of alternative trap lures. We exposed nine individuals to sensory cues in the form of odour, visual, vibration and combined stimuli and measured the response (rate of tongue-flick [RTF]). RTF was significantly higher in odour and combined cues treatments, and there was no significant difference in RTF between live and inanimate cues during odour treatments. Our findings suggest chemical cues are of primary importance in initiating predation and that an inanimate odour stimulus, absent of simultaneous visual and vibratory cues, is a potential low-cost alternative trap lure for the control of invasive corn snake populations

    Inclusive V0V^0 Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions

    Full text link
    Inclusive differential cross sections dσpA/dxFd\sigma_{pA}/dx_F and dσpA/dpt2d\sigma_{pA}/dp_t^2 for the production of \kzeros, \lambdazero, and \antilambda particles are measured at HERA in proton-induced reactions on C, Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to s=41.6\sqrt {s} = 41.6 GeV in the proton-nucleon system. The ratios of differential cross sections \rklpa and \rllpa are measured to be 6.2±0.56.2\pm 0.5 and 0.66±0.070.66\pm 0.07, respectively, for \xf 0.06\approx-0.06. No significant dependence upon the target material is observed. Within errors, the slopes of the transverse momentum distributions dσpA/dpt2d\sigma_{pA}/dp_t^2 also show no significant dependence upon the target material. The dependence of the extrapolated total cross sections σpA\sigma_{pA} on the atomic mass AA of the target material is discussed, and the deduced cross sections per nucleon σpN\sigma_{pN} are compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table

    Single Molecule Fluorescence Image Patterns Linked to Dipole Orientation and Axial Position: Application to Myosin Cross-Bridges in Muscle Fibers

    Get PDF
    Photoactivatable fluorescent probes developed specifically for single molecule detection extend advantages of single molecule imaging to high probe density regions of cells and tissues. They perform in the native biomolecule environment and have been used to detect both probe position and orientation.Fluorescence emission from a single photoactivated probe captured in an oil immersion, high numerical aperture objective, produces a spatial pattern on the detector that is a linear combination of 6 independent and distinct spatial basis patterns with weighting coefficients specifying emission dipole orientation. Basis patterns are tabulated for single photoactivated probes labeling myosin cross-bridges in a permeabilized muscle fiber undergoing total internal reflection illumination. Emitter proximity to the glass/aqueous interface at the coverslip implies the dipole near-field and dipole power normalization are significant affecters of the basis patterns. Other characteristics of the basis patterns are contributed by field polarization rotation with transmission through the microscope optics and refraction by the filter set. Pattern recognition utilized the generalized linear model, maximum likelihood fitting, for Poisson distributed uncertainties. This fitting method is more appropriate for treating low signal level photon counting data than χ(2) minimization.Results indicate that emission dipole orientation is measurable from the intensity image except for the ambiguity under dipole inversion. The advantage over an alternative method comparing two measured polarized emission intensities using an analyzing polarizer is that information in the intensity spatial distribution provides more constraints on fitted parameters and a single image provides all the information needed. Axial distance dependence in the emission pattern is also exploited to measure relative probe position near focus. Single molecule images from axial scanning fitted simultaneously boost orientation and axial resolution in simulation
    corecore