391 research outputs found

    X-Ray Optics Development at NASA MSFC

    Get PDF
    Outline: X-ray optics for space-borne applications; Electroformed NiCo X-ray optics at MSFC (Marshall Space Flight Center); Thin film coatings to enhance X-ray optical performance; Thin film stress; In-situ film stress measurement at MSFC: from prototype to refined design; Ultra lightweight aerogel mirrors

    A Novel Instrument and Methodology for the In-Situ Measurement of the Stress in Thin Films

    Get PDF
    We introduce a novel methodology for the in-situ measurement of mechanical stress during thin film growth utilizing a highly sensitive non-contact variation of the classic spherometer. By exploiting the known spherical deformation of the substrate the value of the stress induced curvature is inferred by measurement of only one point on the substrate's surface-the sagittal. From the known curvature the stress can be calculated using the well-known Stoney equation. Based on this methodology, a stress sensor has been designed which is simple, highly sensitive, compact, and low cost. As a result of its compact nature, the sensor can be mounted in any orientation to accommodate a given deposition geometry without the need for extensive modification to an already existing deposition system. The technique employs the use of a double side polished substrate that offers good specular reflectivity and is isotropic in its mechanical properties, such as oriented crystalline silicon or amorphous soda lime glass, for example. The measurement of the displacement of the uncoated side during deposition is performed with a high resolution (i.e. 5nm), commercially available, inexpensive, fiber optic sensor which can be used in both high vacuum and high temperature environments (i.e. 10(exp-7) Torr and 480oC, respectively). A key attribute of this instrument lies in its potential to achieve sensitivity that rivals other measurement techniques such as the micro cantilever method but, due to the comparatively larger substrate area, offers a more robust and practical alternative for subsequent measurement of additional characteristics of the film that can might be correlated to film stress. We present measurement results of nickel films deposited by magnetron sputtering which show good qualitative agreement to the know behavior of polycrystalline films previously reported by Hoffman

    Differential effects of rapalogues, dual kinase inhibitors on human ovarian carcinoma cells in vitro

    Get PDF
    Ovarian cancer is the second most common gynaecological malignancy and was diagnosed in over 7,000 women in 2011 in the UK. There are currently no reliable biomarkers available for use in a regular screening assay for ovarian cancer and due to characteristic late presentation (78% in stages III and IV) ovarian cancer has a low survival rate (35% after 10 years). The mTOR pathway is a central regulator of growth, proliferation, apoptosis and angiogenesis; providing balance between available resources such as amino acids and growth factors, and stresses such as hypoxia, to control cellular behaviour accordingly. Emerging data links mTOR with the aetiopathogenesis of ovarian cancer. We hypothesised that mTOR inhibitors could play a therapeutic role in ovarian cancer treatment. In this study we began by validating the expression of four main mTOR pathway components, mTOR, DEPTOR, rictor and raptor, at gene and protein level in in vitro models of endometrioid (MDAH2774) and clear cell (SKOV3) ovarian cancer using qPCR and ImageStream technology. Using a wound healing assay we show that inhibition of the mTOR pathway using rapamycin, rapalogues, resveratrol and NVP BEZ-235 induces a cytostatic and not cytotoxic response up to 18 h in these cell lines. We extended these findings up to 72 h with a proliferation assay and show that the effects of inhibition of the mTOR pathway are primarily mediated by the dephosphorylation of p70S6 kinase. We show that mTOR inhibition does not involve alteration of mTOR pathway components or induce caspase 9 cleavage. Preclinical studies including ovarian tissue of ovarian cancer patients, unaffected controls and patients with unrelated gynaecological conditions show that DEPTOR is reliably upregulated in ovarian cancer

    The non-vanishing effect of detuning errors in dynamical decoupling based quantum sensing experiments

    Get PDF
    Characteristic dips appear in the coherence traces of a probe qubit when dynamical decoupling (DD) is applied in synchrony with the precession of target nuclear spins, forming the basis for nanoscale nuclear magnetic resonance (NMR). The frequency of the microwave control pulses is chosen to match the qubit transition but this can be detuned from resonance by experimental errors, hyperfine coupling intrinsic to the qubit, or inhomogeneous broadening. The detuning acts as an additional static field which is generally assumed to be completely removed in Hahn echo and DD experiments. Here we demonstrate that this is not the case in the presence of finite pulse-durations, where a detuning can drastically alter the coherence response of the probe qubit, with important implications for sensing applications. Using the electronic spin associated with a nitrogen-vacancy centre in diamond as a test qubit system, we analytically and experimentally study the qubit coherence response under CPMG and XY8 dynamical decoupling control schemes in the presence of finite pulse-durations and static detunings. Most striking is the splitting of the NMR resonance under CPMG, whereas under XY8 the amplitude of the NMR signal is modulated. Our work shows that the detuning error must not be neglected when extracting data from quantum sensor coherence traces

    Techniques for Achieving Zero Stress in Thin Films of Iridium, Chromium, and Nickel

    Get PDF
    We examine techniques for achieving zero intrinsic stress in thin films of iridium, chromium, and nickel deposited by magnetron sputter deposition. The intrinsic stress is further correlated to the microstructural features and physical properties such as surface roughness and optical density at a scale appropriate to soft X-ray wavelengths. The examination of the stress in these materials is motivated by efforts to advance the optical performance of light-weight X-ray space telescopes into the regime of sub-arcsecond resolution through various deposition techniques that rely on control of the film stress to values within 10-100 MPa. A characteristic feature of the intrinsic stress behavior in chromium and nickel is their sensitivity to the magnitude and sign of the intrinsic stress with argon gas pressure and deposition rate, including the existence of a critical argon process pressure that results in zero film stress which scales linearly with the atomic mass of the sputtered species. While the effect of stress reversal with argon pressure has been previously reported by Hoffman and others for nickel and chromium, we report this effect for iridium. In addition to stress reversal, we identify zero stress in the optical functioning iridium layer shortly after island coalescence for low process pressures at a film thickness of approximately 35nm. The measurement of the low values of stress during deposition was achieved with the aid of a sensitive in-situ instrument capable of a minimum detectable level of stress, assuming a 35nm thick film, in the range of 0.40-6.0 MPa for oriented crystalline silicon substrate thicknesses of 70-280 microns, respectively

    Spin properties of dense near-surface ensembles of nitrogen-vacancy centres in diamond

    Get PDF
    We present a study of the spin properties of dense layers of near-surface nitrogen-vacancy (NV) centres in diamond created by nitrogen ion implantation. The optically detected magnetic resonance contrast and linewidth, spin coherence time, and spin relaxation time, are measured as a function of implantation energy, dose, annealing temperature and surface treatment. To track the presence of damage and surface-related spin defects, we perform in situ electron spin resonance spectroscopy through both double electron-electron resonance and cross-relaxation spectroscopy on the NV centres. We find that, for the energy (4−304-30~keV) and dose (5×1011−10135\times10^{11}-10^{13}~ions/cm2^2) ranges considered, the NV spin properties are mainly governed by the dose via residual implantation-induced paramagnetic defects, but that the resulting magnetic sensitivity is essentially independent of both dose and energy. We then show that the magnetic sensitivity is significantly improved by high-temperature annealing at ≥1100∘\geq1100^\circC. Moreover, the spin properties are not significantly affected by oxygen annealing, apart from the spin relaxation time, which is dramatically decreased. Finally, the average NV depth is determined by nuclear magnetic resonance measurements, giving ≈10\approx10-17~nm at 4-6 keV implantation energy. This study sheds light on the optimal conditions to create dense layers of near-surface NV centres for high-sensitivity sensing and imaging applications.Comment: 12 pages, 7 figure
    • …
    corecore