446 research outputs found

    Pathophysiology of acute experimental pancreatitis: Lessons from genetically engineered animal models and new molecular approaches

    Get PDF
    The incidence of acute pancreatitis is growing and worldwide population-based studies report a doubling or tripling since the 1970s. 25% of acute pancreatitis are severe and associated with histological changes of necrotizing pancreatitis. There is still no specific medical treatment for acute pancreatitis. The average mortality resides around 10%. In order to develop new specific medical treatment strategies for acute pancreatitis, a better understanding of the pathophysiology during the onset of acute pancreatitis is necessary. Since it is difficult to study the early acinar events in human pancreatitis, several animal models of acute pancreatitis have been developed. By this, it is hoped that clues into human pathophysiology become possible. In the last decade, while employing molecular biology techniques, a major progress has been made. The genome of the mouse was recently sequenced. Various strategies are possible to prove a causal effect of a single gene or protein, using either gain-of-function (i.e., overexpression of the protein of interest) or loss-of-function studies (i.e., genetic deletion of the gene of interest). The availability of transgenic mouse models and gene deletion studies has clearly increased our knowledge about the pathophysiology of acute pancreatitis and enables us to study and confirm in vitro findings in animal models. In addition, transgenic models with specific genetic deletion or overexpression of genes help in understanding the role of one specific protein in a cascade of inflammatory processes such as pancreatitis where different proteins interact and co-react. This review summarizes the recent progress in this field. Copyright (c) 2005 S. Karger AG, Basel

    Target Profile Estimation using Haar Functions

    Get PDF
    An approach to estimating the target acceleration in a maneuvering target model using Haar function partial summations to model the target acceleration is developed. A kinematic constraint is applied to the maneuvering target model and the effects of the use of this constraint are reviewed

    Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals

    Get PDF
    The spontaneous assembly of aromatic cation radicals (D+•) with their neutral counterpart (D) affords dimer cation radicals (D2+•). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography

    International Coercion, Emulation and Policy Diffusion: Market-Oriented Infrastructure Reforms, 1977-1999

    Full text link
    Why do some countries adopt market-oriented reforms such as deregulation, privatization and liberalization of competition in their infrastructure industries while others do not? Why did the pace of adoption accelerate in the 1990s? Building on neo-institutional theory in sociology, we argue that the domestic adoption of market-oriented reforms is strongly influenced by international pressures of coercion and emulation. We find robust support for these arguments with an event-history analysis of the determinants of reform in the telecommunications and electricity sectors of as many as 205 countries and territories between 1977 and 1999. Our results also suggest that the coercive effect of multilateral lending from the IMF, the World Bank or Regional Development Banks is increasing over time, a finding that is consistent with anecdotal evidence that multilateral organizations have broadened the scope of the “conditionality” terms specifying market-oriented reforms imposed on borrowing countries. We discuss the possibility that, by pressuring countries into policy reform, cross-national coercion and emulation may not produce ideal outcomes.http://deepblue.lib.umich.edu/bitstream/2027.42/40099/3/wp713.pd

    New Approach for M-Cell-Specific Molecules Screening by Comprehensive Transcriptome Analysis

    Get PDF
    A minor population of M cells within the follicle-associated epithelium (FAE) of intestinal Peyer's patches (PPs) serves as a major portal for entry of exogenous antigens. Characterization of the mammalian M cells, including identification of M-cell surface molecules used for bacterial uptake, has been hampered by their relative rarity. In contrast, M cells constitute virtually all of the FAE cells in the avian bursa of Fabricius. We therefore performed comparative gene expression profiling of chicken and murine FAE to identify commonly expressed genes by M cells in both species. The comprehensive transcriptome analysis revealed that 28 genes were commonly up-regulated in FAE from both species. In situ hybridization revealed that annexin A10 (Anxa10) mRNA was scattered in FAE, and co-localized with Ulex europaeus agglutinin-1 binding to M cells. Whole-mount immunostaining also revealed that cellular prion protein (PrPC) was expressed on the luminal side of the apical plasma membrane of M cells, and co-localized with grycoprotein 2 that recognizes only M cells in murine PP. Our findings identify new M-cell-specific molecules through using comprehensive transcriptome analysis. These conserved molecules in M cells of mice and chickens may play essential roles in M-cell function and/or differentiation

    Mononuclear cells modulate the activity of pancreatic stellate cells which in turn promote fibrosis and inflammation in chronic pancreatitis

    Get PDF
    Background: Interactions between mononuclear cells and activated pancreatic myofibroblasts (pancreatic stellate cells; PSC) may contribute to inflammation and fibrosis in chronic pancreatitis (CP). Methods: Markers of fibrosis and inflammation were concomitantly analysed by immunohistochemistry in chronic pancreatitis tissues. In vitro, PSC were stimulated with TNFalpha and LPS. Primary human blood mononuclear cells (PBMC) and PSC were cocultured, followed by analysis of cytokines and extracellular matrix (ECM) proteins. PBMC were derived from healthy donors and CP and septic shock patients. Results: In areas of mononuclear cell infiltration in chronic pancreatitis tissues, there was decreased immunoreactivity for collagen1 and fibronectin, in contrast to areas with sparse mononuclear cells, although PSC were detectable in both areas. LPS and TNFalpha induced collagen1 and fibronectin levels as well as the matrix degradation enzyme MMP-1. Coculture experiments with PSC and PBMC revealed increased fibronectin secretion induced by PBMC. In addition, donor and CP PBMC significantly induced an increase in IL-6, MCP-1 and TGFbeta levels under coculture conditions. Determination of the source of cytokines and ECM proteins by mRNA expression analysis confirmed PSC as major contributors of ECM production. The increase in cytokine expression was PBMC- and also PSC-derived. Conclusion: Mononuclear cells modulate the activity of pancreatic stellate cells, which may in turn promote fibrosis and inflammation

    Are social innovation paradigms incommensurable?

    Get PDF
    This paper calls attention to the problematic use of the concept of social innovation which remains undefined despite its proliferation throughout academic and policy discourses. Extant research has thus far failed to capture the socio-political contentions which surround social innovation. This paper therefore draws upon the work of Thomas Kuhn and conducts a paradigmatic analysis of the field of social innovation which identifies two emerging schools: one technocratic, the other democratic. The paper identifies some of the key thinkers in each paradigm and explains how the struggle between these two paradigms reveals itself to be part of a broader conflict between neoliberalism and it opponents and concludes by arguing that future research focused upon local contextualised struggles will reveal which paradigm is in the ascendancy

    Rethinking Human-Animal Relations: The Critical Role of Social Psychology

    Get PDF
    People deeply value their social bonds with companion animals, yet routinely devalue other animals, considering them mere commodities to satisfy human interests and desires. Despite the inherently social and intergroup nature of these complexities, social psychology is long overdue in integrating human-animal relations in its theoretical frameworks. The present body of work brings together social psychological research advancing our understanding of: 1) the factors shaping our perceptions and thinking about animals as social groups, 2) the complexities involved in valuing (caring) and devaluing (exploiting) animals, and 3) the implications and importance of human-animal relations for human intergroup relations. In this article, we survey the diversity of research paradigms and theoretical frameworks developed within the intergroup relations literature that are relevant, perchance critical, to the study of human-animal relations. Furthermore, we highlight how understanding and rethinking human-animal relations will eventually lead to a more comprehensive understanding of many human intergroup phenomena

    Investigation of epimer formation in amide coupling reactions: an experiment for advanced undergraduate students

    Get PDF
    An experiment is described to investigate how the choice of coupling agent and reaction conditions affects the ratio of epimers formed in the sensitive amide-coupling reaction between N-Boc or N-benzoyl (R)-phenylglycine and (S)-valine methyl ester. The experiment, which is suitable for third-year undergraduates, is designed to teach about important synthetic methods and reaction mechanisms, and to develop skills in designing experiments, data analysis, and team work
    corecore