213 research outputs found

    Critical current densities and microstructures in Rod-in-Tube and Tube Type Nb3Sn strands - Present status and prospects for improvement

    Full text link
    In this work, the transport and magnetization properties of distributed-barrier Rod-in-Tube (RIT) strands and Tube Type strands are studied. While Tube Type strands had smaller magnetizations and thus better stabilities in the low field region, their 12 T non-Cu Jcs were somewhat smaller than those of the RIT strands. Microstructures were investigated in order to find out the reasons for the difference in non-Cu Jc values. Their grain size and stoichiometry were found to be comparable, leading to similar layer Jcs. Accordingly it was determined that the lower A15 area fraction rather than the quality of A15 layer was the cause of the discrepancy in non-Cu Jc. Subsequently, the area utilizations of subelements were investigated. While for a RIT strand the fine grain (FG) A15 area occupies ~60% of a subelement, for a Tube Type strand it is no more than 40%. Further analysis indicates that the low FG area fraction in a Tube Type strand is attributed to its much larger unreacted Nb area fraction. Finally, a simple change in strand architecture is proposed to reduce the unreacted Nb area fraction.Comment: 26 page

    Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology : recent pros and cons in the midst of a lively debate

    Get PDF
    The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation

    The Zebrafish GenomeWiki: a crowdsourcing approach to connect the long tail for zebrafish gene annotation.

    Get PDF
    A large repertoire of gene-centric data has been generated in the field of zebrafish biology. Although the bulk of these data are available in the public domain, most of them are not readily accessible or available in nonstandard formats. One major challenge is to unify and integrate these widely scattered data sources. We tested the hypothesis that active community participation could be a viable option to address this challenge. We present here our approach to create standards for assimilation and sharing of information and a system of open standards for database intercommunication. We have attempted to address this challenge by creating a community-centric solution for zebrafish gene annotation. The Zebrafish GenomeWiki is a 'wiki'-based resource, which aims to provide an altruistic shared environment for collective annotation of the zebrafish genes. The Zebrafish GenomeWiki has features that enable users to comment, annotate, edit and rate this gene-centric information. The credits for contributions can be tracked through a transparent microattribution system. In contrast to other wikis, the Zebrafish GenomeWiki is a 'structured wiki' or rather a 'semantic wiki'. The Zebrafish GenomeWiki implements a semantically linked data structure, which in the future would be amenable to semantic search. Database URL: http://genome.igib.res.in/twiki

    Very Small Embryonic-Like Stem Cells Purified from Umbilical Cord Blood Lack Stem Cell Characteristics

    Get PDF
    Very small embryonic-like (VSEL) cells have been described as putatively pluripotent stem cells present in murine bone marrow and human umbilical cord blood (hUCB) and as such are of high potential interest for regenerative medicine. However, there remain some questions concerning the precise identity and properties of VSEL cells, particularly those derived from hUCB. For this reason, we have carried out an extensive characterisation of purified populations of VSEL cells from a large number of UCB samples. Consistent with a previous report, we find that VSEL cells are CXCR4+, have a high density, are indeed significantly smaller than HSC and have an extremely high nuclear/cytoplasmic ratio. Their nucleoplasm is unstructured and stains strongly with Hoechst 33342. A comprehensive FACS screen for surface markers characteristic of embryonic, mesenchymal, neuronal or hematopoietic stem cells revealed negligible expression on VSEL cells. These cells failed to expand in vitro under a wide range of culture conditions known to support embryonic or adult stem cell types and a microarray analysis revealed the transcriptional profile of VSEL cells to be clearly distinct both from well-defined populations of pluripotent and adult stem cells and from the mature hematopoietic lineages. Finally, we detected an aneuploid karyotype in the majority of purified VSEL cells by fluorescence in situ hybridisation. These data support neither an embryonic nor an adult stem cell like phenotype, suggesting rather that hUCB VSEL cells are an aberrant and inactive population that is not comparable to murine VSEL cells

    PHDcleav: A SVM based method for predicting human Dicer cleavage sites using sequence and secondary structure of miRNA precursors

    Get PDF
    Background: Dicer, an RNase III enzyme, plays a vital role in the processing of pre-miRNAs for generating the miRNAs. The structural and sequence features on pre-miRNA which can facilitate position and efficiency of cleavage are not well known. A precise cleavage by Dicer is crucial because an inaccurate processing can produce miRNA with different seed regions which can alter the repertoire of target genes.Results: In this study, a novel method has been developed to predict Dicer cleavage sites on pre-miRNAs using Support Vector Machine. We used the dataset of experimentally validated human miRNA hairpins from miRBase, and extracted fourteen nucleotides around Dicer cleavage sites. We developed number of models using various types of features and achieved maximum accuracy of 66% using binary profile of nucleotide sequence taken from 5p arm of hairpin. The prediction performance of Dicer cleavage site improved significantly from 66% to 86% when we integrated secondary structure information. This indicates that secondary structure plays an important role in the selection of cleavage site. All models were trained and tested on 555 experimentally validated cleavage sites and evaluated using 5-fold cross validation technique. In addition, the performance was also evaluated on an independent testing dataset that achieved an accuracy of ~82%.Conclusion: Based on this study, we developed a webserver PHDcleav (http://www.imtech.res.in/raghava/phdcleav/) to predict Dicer cleavage sites in pre-miRNA. This tool can be used to investigate functional consequences of genetic variations/SNPs in miRNA on Dicer cleavage site, and gene silencing. Moreover, it would also be useful in the discovery of miRNAs in human genome and design of Dicer specific pre-miRNAs for potent gene silencing.Peer reviewedBiochemistry and Molecular Biolog
    corecore