9,081 research outputs found
Quantum Gravity and Matter: Counting Graphs on Causal Dynamical Triangulations
An outstanding challenge for models of non-perturbative quantum gravity is
the consistent formulation and quantitative evaluation of physical phenomena in
a regime where geometry and matter are strongly coupled. After developing
appropriate technical tools, one is interested in measuring and classifying how
the quantum fluctuations of geometry alter the behaviour of matter, compared
with that on a fixed background geometry.
In the simplified context of two dimensions, we show how a method invented to
analyze the critical behaviour of spin systems on flat lattices can be adapted
to the fluctuating ensemble of curved spacetimes underlying the Causal
Dynamical Triangulations (CDT) approach to quantum gravity. We develop a
systematic counting of embedded graphs to evaluate the thermodynamic functions
of the gravity-matter models in a high- and low-temperature expansion. For the
case of the Ising model, we compute the series expansions for the magnetic
susceptibility on CDT lattices and their duals up to orders 6 and 12, and
analyze them by ratio method, Dlog Pad\'e and differential approximants. Apart
from providing evidence for a simplification of the model's analytic structure
due to the dynamical nature of the geometry, the technique introduced can shed
further light on criteria \`a la Harris and Luck for the influence of random
geometry on the critical properties of matter systems.Comment: 40 pages, 15 figures, 13 table
Towards an expanded model of litigation
Introduction: The call for contributions for this workshop describes the important new challenges for the legal search
community this domain brings. Rather than just understanding the challenges this domain poses in terms of
their technical properties, we would like to suggest that understanding these challenges as socio-technical
challenges will be important. That is, as well as calling for research on a technical level to address these
challenges we are also calling for work to understand the social practices of those involved in e-discovery
(ED) and related legal work. A particularly interesting feature of this field is that it is likely that search
technologies will (at least semi-)automate responsiveness review in the relatively near term and this will
change the way that the work is organised and done in many ways – offering new possibilities for new
ways of organising the work. As well as designing those technologies for automating responsiveness
review we need to be envisioning how the work will be done in the future, how these technologies will
impact the organisation of the case and so on. In this position paper we therefore outline the importance of
understanding the wider social context of ED when designing tools and technologies to support and change
the work. We would like to reinforce and expand on Conrad’s call for IR researchers to understand just
what ED entails [2], include the stages that come both before and after core retrieval activities.
The importance of considering the social aspects of work in the design of the technology has been
established for some time. Ushering in this ‘turn to the social,’ and focusing on interface design, Gentner
and Grudin [4] described how the GUI has already changed from an interface for engineers, representing
the engineering model of the machine to one that supported single ‘everyman’ users (based on ideas from
psychology). From then onwards the interface has evolved to support groups of users, taking into account
the social and organisational contexts of use. This has particular resonance for the design of ED
technologies: during ED in particular and the wider legal process there are often many lawyers involved –
reviewing documents, determining issues, etc. Even if the way that their work is organised currently is not
seen as collaborative in the traditional sense – with individual lawyers working on individual document sets
to review them - their work needs to be coordinated and it seems likely that their work could be enhanced
by, for example, knowledge of what their colleagues had found, how the case was shaping up, new key
terms and facts turned up and so on. Work is often modelled for the purposes of design using process
models, but this misses out on the richness and variety actually found when one examines how the work is
carried out [3]. Technologies which strictly enforce the process models can often hinder the work, or end
up being worked around as was the case with workflow systems since people interpret processes very
flexibly to get the work done ([1], [3]). Other studies in other fields have found similar problems when
systems are designed on for example cognitive models of how the work is done; they often do not take into
account the situated nature of the work and thus they can be very difficult to use [5]. We believe, like [2],
that a clear understanding of the social practices of ED is vital for the creation of high-quality, meaningful
tools and technologies. We furthermore propose that work practice studies, to be used in combination with
other methods, are a central part of getting the detailed understanding of the work practices central to
designing useful and intelligent tools. Work practice studies would involve ethnographies, consisting
primarily of observation, undertaken of practitioners engaging in the work of ED
Characterization of qubit chains by Feynman probes
We address the characterization of qubit chains and assess the performances
of local measurements compared to those provided by Feynman probes, i.e.
nonlocal measurements realized by coupling a single qubit regis- ter to the
chain. We show that local measurements are suitable to estimate small values of
the coupling and that a Bayesian strategy may be successfully exploited to
achieve optimal precision. For larger values of the coupling Bayesian local
strategies do not lead to a consistent estimate. In this regime, Feynman probes
may be exploited to build a consistent Bayesian estimator that saturates the
Cram\'er-Rao bound, thus providing an effective characterization of the chain.
Finally, we show that ultimate bounds to precision, i.e. saturation of the
quantum Cram\'er-Rao bound, may be achieved by a two-step scheme employing
Feynman probes followed by local measurements.Comment: 8 pages, 5 figure
One-loop renormalization in a toy model of Horava-Lifshitz gravity
We present a one loop calculation in the context of Horava-Lifshitz gravity. Due to the complexity of the calculation in the full theory we focus here on the study of a toy model, namely the conformal reduction of the z=2 projectable theory in 2+1 dimensions. For this value of the dimension there are no gravitons, hence the conformal mode is the only physical degree of freedom, and thus we expect our toy model to lead to qualitatively correct answers regarding the perturbative renormalization of the full theory. We find that Newton's constant (dimensionless in Horava-Lifshitz gravity) is asymptotically free. However, the DeWitt supermetric approaches its Weyl invariant form with the same speed and the effective interaction coupling remains constant along the flow. In other words, the would-be asymptotic freedom associated to the running Newton's constant is exactly balanced by the strong coupling of the scalar mode as the Weyl invariant limit is approached. We conclude that in such model the UV limit is singular at one loop order, and we argue that a similar phenomenon can be expected in the full theory, even in higher dimensions
Effectiveness of continence promotion for older women via community organisations: A cluster randomised trial
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/Objectives: The primary objective of this cluster randomised controlled trial was to compare the effectiveness of the three experimental continence promotion interventions against a control intervention on urinary symptom improvement in older women with untreated incontinence recruited from community organisations. A second objective was to determine whether changes in incontinence-related knowledge and new uptake of risk-modifying behaviours explain these improvements.
Setting: 71 community organisations across the UK.
Participants: 259 women aged 60 years and older with untreated incontinence entered the trial; 88% completed the 3-month follow-up.
Interventions: The three active interventions consisted of a single 60 min group workshop on (1) continence education (20 clusters, 64 women); (2) evidence-based self-management (17 clusters, 70 women); or (3) combined continence education and self-management (17 clusters, 61 women). The control intervention was a single 60 min educational group workshop on memory loss, polypharmacy and osteoporosis (17 clusters, 64 women).
Primary and secondary outcome measures: The primary outcome was self-reported improvement in incontinence 3 months postintervention at the level of the individual. The secondary outcome was change in the International Consultation on Incontinence Questionnaire (ICIQ) from baseline to 3-month follow-up. Changes in incontinence-related knowledge and behaviours were also assessed.
Results: The highest rate of urinary symptom improvement occurred in the combined intervention group (66% vs 11% of the control group, prevalence difference 55%, 95% CI 43% to 67%, intracluster correlation 0). 30% versus 6% of participants reported significant improvement respectively (prevalence difference 23%, 95% CI 10% to 36%, intracluster correlation 0). The number-needed-to-treat was 2 to achieve any improvement in incontinence symptoms, and 5 to attain significant improvement. Compared to controls, participants in the combined intervention reported an adjusted mean 2.05 point (95% CI 0.87 to 3.24) greater improvement on the ICIQ from baseline to 3-month follow-up. Changes in knowledge and self-reported risk-reduction behaviours paralleled rates of improvement in all intervention arms.
Conclusions: Continence education combined with evidence-based self-management improves symptoms of incontinence among untreated older women. Community organisations represent an untapped vector for delivering effective continence promotion interventions.Canadian Institutes of Health Research – Institute on
Aging and the Economic and Social Research Council (UK
The local potential approximation in quantum gravity
Within the context of the functional renormalization group flow of gravity, we suggest that a generic f(R) ansatz (i.e. not truncated to any specific form, polynomial or not) for the effective action plays a role analogous to the local potential approximation (LPA) in scalar field theory. In the same spirit of the LPA, we derive and study an ordinary differential equation for f(R) to be satisfied by a fixed point of the renormalization group flow. As a first step in trying to assess the existence of global solutions (i.e. true fixed point) for such equation, we investigate here the properties of its solutions by a comparison of various series expansions and numerical integrations. In particular, we study the analyticity conditions required because of the presence of fixed singularities in the equation, and we develop an expansion of the solutions for large R up to order N=29. Studying the convergence of the fixed points of the truncated solutions with respect to N, we find a characteristic pattern for the location of the fixed points in the complex plane, with one point stemming out for its stability. Finally, we establish that if a non-Gaussian fixed point exists within the full f(R) approximation, it corresponds to an R^2 theory
Functional Renormalisation Group Approach for Tensorial Group Field Theory: a Rank-3 Model
We set up the Functional Renormalisation Group formalism for Tensorial Group Field Theory in full generality. We then apply it to a rank-3 model over U(1) x U(1) x U(1), endowed with a linear kinetic term and nonlocal interactions. The system of FRG equations turns out to be non-autonomous in the RG flow parameter. This feature is explained by the existence of a hidden scale, the radius of the group manifold. We investigate in detail the opposite regimes of large cut-off (UV) and small cut-off (IR) of the FRG equations, where the system becomes autonomous, and we find, in both case, Gaussian and non-Gaussian fixed points. We derive and interpret the critical exponents and flow diagrams associated with these fixed points, and discuss how the UV and IR regimes are matched at finite N. Finally, we discuss the evidence for a phase transition from a symmetric phase to a broken or condensed phase, from an RG perspective, finding that this seems to exist only in the approximate regime of very large radius of the group manifold, as to be expected for systems on compact manifolds
Neural Relax
We present an algorithm for data preprocessing of an associative memory
inspired to an electrostatic problem that turns out to have intimate relations
with information maximization
Alexander quandle lower bounds for link genera
We denote by Q_F the family of the Alexander quandle structures supported by
finite fields. For every k-component oriented link L, every partition P of L
into h:=|P| sublinks, and every labelling z of such a partition by the natural
numbers z_1,...,z_n, the number of X-colorings of any diagram of (L,z) is a
well-defined invariant of (L,P), of the form q^(a_X(L,P,z)+1) for some natural
number a_X(L,P,z). Letting X and z vary in Q_F and among the labellings of P,
we define a derived invariant A_Q(L,P)=sup a_X(L,P,z).
If P_M is such that |P_M|=k, we show that A_Q(L,P_M) is a lower bound for
t(L), where t(L) is the tunnel number of L. If P is a "boundary partition" of L
and g(L,P) denotes the infimum among the sums of the genera of a system of
disjoint Seifert surfaces for the L_j's, then we show that A_Q(L,P) is at most
2g(L,P)+2k-|P|-1. We set A_Q(L):=A_Q(L,P_m), where |P_m|=1. By elaborating on a
suitable version of a result by Inoue, we show that when L=K is a knot then
A_Q(K) is bounded above by A(K), where A(K) is the breadth of the Alexander
polynomial of K. However, for every g we exhibit examples of genus-g knots
having the same Alexander polynomial but different quandle invariants A_Q.
Moreover, in such examples A_Q provides sharp lower bounds for the genera of
the knots. On the other hand, A_Q(L) can give better lower bounds on the genus
than A(L), when L has at least two components.
We show that in order to compute A_Q(L) it is enough to consider only
colorings with respect to the constant labelling z=1. In the case when L=K is a
knot, if either A_Q(K)=A(K) or A_Q(K) provides a sharp lower bound for the knot
genus, or if A_Q(K)=1, then A_Q(K) can be realized by means of the proper
subfamily of quandles X=(F_p,*), where p varies among the odd prime numbers.Comment: 36 pages; 16 figure
- …