246 research outputs found
The genesis of Edward Jenner's Inquiry of 1798: a comparison of the two unpublished manuscripts and the published version.
Antigenic Diversity among Oocysts of Clinical Isolates of Cryptosporidium parvum
application/pdfA panel of monoclonal antibodies has been produced against the protozoan parasite Cryptosporidium parvum which is a major cause of diarrhoeal disease in man and other animals. C. parvum oocysts from both a human and a bovine case of cryptosporidiosis were used as immunogens. A total of 11 different monoclonal antibodies were obtained which could bind to formalin-fixed oocysts. One was IgA but the remainder were all of IgM isotype. The reactivity of these monoclonal antibodies against a series of C. parvum oocysts obtained from 25 patients in Chile was examined using indirect immuno-fluorescence. Although a mixture of all of the 11 antibodies would have detected oocysts in each of the samples, no one monoclonal antibody recognised all oocysts. Each antibody showed a different recognition pattern. Thus by using these monoclonal antibodies we have demonstrated that there is tremendous antigenic variability among C. parvum oocysts. These antibodies should prove most useful in examining the epidemiology of C. parvum infections.journal articl
Cowpox Virus Outbreak in Banded Mongooses (Mungos mungo) and Jaguarundis (Herpailurus yagouaroundi) with a Time-Delayed Infection to Humans
BACKGROUND:Often described as an extremely rare zoonosis, cowpox virus (CPXV) infections are on the increase in Germany. CPXV is rodent-borne with a broad host range and contains the largest and most complete genome of all poxviruses, including parts with high homology to variola virus (smallpox). So far, most CPXV cases have occurred individually in unvaccinated animals and humans and were caused by genetically distinguishable virus strains. METHODOLOGY/PRINCIPAL FINDINGS:Generalized CPXV infections in banded mongooses (Mungos mungo) and jaguarundis (Herpailurus yagouaroundi) at a Zoological Garden were observed with a prevalence of the affected animal group of 100% and a mortality of 30%. A subsequent serological investigation of other exotic animal species provided evidence of subclinical cases before the onset of the outbreak. Moreover, a time-delayed human cowpox virus infection caused by the identical virus strain occurred in a different geographical area indicating that handling/feeding food rats might be the common source of infection. CONCLUSIONS/SIGNIFICANCE:Reports on the increased zoonotic transmission of orthopoxviruses have renewed interest in understanding interactions between these viruses and their hosts. The list of animals known to be susceptible to CPXV is still growing. Thus, the likely existence of unknown CPXV hosts and their distribution may present a risk for other exotic animals but also for the general public, as was shown in this outbreak. Animal breeders and suppliers of food rats represent potential multipliers and distributors of CPXV, in the context of increasingly pan-European trading. Taking the cessation of vaccination against smallpox into account, this situation contributes to the increased incidence of CPXV infections in man, particularly in younger age groups, with more complicated courses of clinical infections
Prevalência do Cryptosporidium parvum em crianças abaixo de 5 anos, residentes na zona urbana de Campo Grande, MS, Brasil, 1996
Serum immunoglobulin G, M and A response to Cryptosporidium parvum in Cryptosporidium-HIV co-infected patients
<p>Abstract</p> <p>Background</p> <p><it>Cryptosporidium parvum</it>, the protozoan parasite, causes a significant enteric disease in immunocompromised hosts such as HIV patients. The present study was aimed to compare serum IgG, IgM and IgA responses to crude soluble antigen of <it>C. parvum </it>in HIV seropositive and seronegative patients co-infected with <it>Cryptosporidium </it>and to correlate the responses with symptomatology.</p> <p>Methods</p> <p><it>Cryptosporidium parvum </it>specific serum antibody (IgG, IgM and IgA) responses were assessed by ELISA in 11 HIV seropositive <it>Cryptosporidium </it>positive (Group I), 20 HIV seropositive <it>Cryptosporidium </it>negative (Group II), 10 HIV seronegative <it>Cryptosporidium </it>positive (Group III), 20 HIV seronegative <it>Cryptosporidium </it>negative healthy individuals (Group IV) and 25 patients with other parasitic diseases (Group V).</p> <p>Results</p> <p>A positive IgG and IgA antibody response was observed in significantly higher number of <it>Cryptosporidium </it>infected individuals (Gp I and III) compared to <it>Cryptosporidium </it>un-infected individuals (Gp II, IV and V) irrespective of HIV/immune status. Sensitivity of IgG ELISA in our study was found to be higher as compared to IgM and IgA ELISA. The number of patients with positive IgG, IgM and IgA response was not significantly different in HIV seropositive <it>Cryptosporidium </it>positive patients with diarrhoea when compared to patients without diarrhoea and in patients with CD4 counts <200 when compared to patients with CD4 counts >200 cells/μl.</p> <p>Conclusion</p> <p>The study showed specific serum IgG and IgA production in patients infected with <it>Cryptosporidium</it>, both HIV seropositive and seronegative as compared to uninfected subjects suggesting induction of <it>Cryptosporidium </it>specific humoral immune response in infected subjects. However, there was no difference in number of patients with positive response in HIV seropositive or seronegative groups indicating that HIV status may not be playing significant role in modulation of <it>Cryptosporidium </it>specific antibody responses. The number of patients with positive IgG, IgM and IgA response was not significantly different in patients with or without history of diarrhoea thereby indicating that <it>Cryptosporidium </it>specific antibody responses may not be necessarily associated with protection from symptomatology.</p
Direct TLR2 Signaling Is Critical for NK Cell Activation and Function in Response to Vaccinia Viral Infection
Natural killer (NK) cells play an essential role in innate immune control of poxviral infections in vivo. However, the mechanism(s) underlying NK cell activation and function in response to poxviruses remains poorly understood. In a mouse model of infection with vaccinia virus (VV), the most studied member of the poxvirus family, we identified that the Toll-like receptor (TLR) 2-myeloid differentiating factor 88 (MyD88) pathway was critical for the activation of NK cells and the control of VV infection in vivo. We further showed that TLR2 signaling on NK cells, but not on accessory cells such as dendritic cells (DCs), was necessary for NK cell activation and that this intrinsic TLR2-MyD88 signaling pathway was required for NK cell activation and played a critical role in the control of VV infection in vivo. In addition, we showed that the activating receptor NKG2D was also important for efficient NK activation and function, as well as recognition of VV-infected targets. We further demonstrated that VV could directly activate NK cells via TLR2 in the presence of cytokines in vitro and TLR2-MyD88-dependent activation of NK cells by VV was mediated through the phosphatidylinositol 3-kinase (PI3K)-extracellular signal-regulated kinase (ERK) pathway. Taken together, these results represent the first evidence that intrinsic TLR signaling is critical for NK cell activation and function in the control of a viral infection in vivo, indicate that multiple pathways are required for efficient NK cell activation and function in response to VV infection, and may provide important insights into the design of effective strategies to combat poxviral infections
Genomic Expression Libraries for the Identification of Cross-Reactive Orthopoxvirus Antigens
Increasing numbers of human cowpox virus infections that are being observed and that particularly affect young non-vaccinated persons have renewed interest in this zoonotic disease. Usually causing a self-limiting local infection, human cowpox can in fact be fatal for immunocompromised individuals. Conventional smallpox vaccination presumably protects an individual from infections with other Orthopoxviruses, including cowpox virus. However, available live vaccines are causing severe adverse reactions especially in individuals with impaired immunity. Because of a decrease in protective immunity against Orthopoxviruses and a coincident increase in the proportion of immunodeficient individuals in today's population, safer vaccines need to be developed. Recombinant subunit vaccines containing cross-reactive antigens are promising candidates, which avoid the application of infectious virus. However, subunit vaccines should contain carefully selected antigens to confer a solid cross-protection against different Orthopoxvirus species. Little is known about the cross-reactivity of antibodies elicited to cowpox virus proteins. Here, we first identified 21 immunogenic proteins of cowpox and vaccinia virus by serological screenings of genomic Orthopoxvirus expression libraries. Screenings were performed using sera from vaccinated humans and animals as well as clinical sera from patients and animals with a naturally acquired cowpox virus infection. We further analyzed the cross-reactivity of the identified immunogenic proteins. Out of 21 identified proteins 16 were found to be cross-reactive between cowpox and vaccinia virus. The presented findings provide important indications for the design of new-generation recombinant subunit vaccines
Virulence in Murine Model Shows the Existence of Two Distinct Populations of Brazilian Vaccinia virus Strains
Brazilian Vaccinia virus had been isolated from sentinel mice, rodents and recently from humans, cows and calves during outbreaks on dairy farms in several rural areas in Brazil, leading to high economic and social impact. Some phylogenetic studies have demonstrated the existence of two different populations of Brazilian Vaccinia virus strains circulating in nature, but little is known about their biological characteristics. Therefore, our goal was to study the virulence pattern of seven Brazilian Vaccinia virus strains. Infected BALB/c mice were monitored for morbidity, mortality and viral replication in organs as trachea, lungs, heart, kidneys, liver, brain and spleen. Based on the virulence potential, the Brazilian Vaccinia virus strains were grouped into two groups. One group contained GP1V, VBH, SAV and BAV which caused disease and death in infected mice and the second one included ARAV, GP2V and PSTV which did not cause any clinical signals or death in infected BALB/c mice. The subdivision of Brazilian Vaccinia virus strains into two groups is in agreement with previous genetic studies. Those data reinforce the existence of different populations circulating in Brazil regarding the genetic and virulence characteristics
- …
